

An industry leading portfolio of offers delivering sustainable value

Green Premium

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACH substance information
- Industry leading \# of PEP's*
- Circularity instructions

Discover what we mean by green Check your products!

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.
CO_{2} and P\&L impact through... Resource Performance
Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_{2} emissions.

Cost of ownership optimization through... Circular Performance We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide loT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance
Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation
Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

A transfer switching equipment is indispensable:

For critical applications in particular

For all others

 in general

A transfer switching equipment is indispensable for applications that need a continuous supply of electric power (hospitals, airports, banks, government facilities, etc.).
But A transfer switching equipment is also suitable for all LV electrical installations exposed to:
> Nominal voltage loss or dip (when there is high demand for electric power)
> Unpredictable power quality

> Frequent power cuts.
These factors, and many others, can damage the continuity of service of your electrical installation.
For infrastructure managers, a sourcechangeover system gives direct economic benefits: it is possible to select your source based on power cost.
In this case, the replacement source is used as an alternative, more economical source.

> Managing energy efficiently
> Power Cost
> Safety

Where backup supply must be reliable: now that is everywhere.

Electricity is the fuel that feeds economic activity. Very few operations can withstand the financial impact of an electrical stoppage.

For occupant comfort, business continuity, and worker/visitor safety, dependability levels which used to apply to hospitals or airports are now becoming required in shopping malls and offices.

Additionally, utility companies make their contracts more sophisticated to deal with energy concerns: for example, by including time restrictions to total accessible power.

For these reasons, backup power sources expand across all types of buildings, and require high performance connection and management.
Enabling you to meet these challenges,
TransferPacT comes as the natural continuation of the world leading low voltage distribution system developed by Schneider Electric.

$\$ 740000$
 average cost per event of
 unplanned downtime in a data center

Source

to switch the load to meet

 was your needs

System

2 or 3 mechanically interlocked manually-operated circuit breakers or 2 switch-disconnectors.

Automatic source-changeover system
(or ATSE: Automatic Transfer Switching Equipment)
An automatic controller may be added to a remote-operated source-changeover system. It is possible to automatically control source transfer according to programmed (dedicated controllers) or programmable (PLC) operating modes. These solutions ensure optimum energy management.

System

Derived ATSE: 2 or 3 circuit breakers that may have different configurations, linked by an electrical interlocking system. A mechanical interlocking system protects against electrical malfunctions or incorrect manual operations, with an automatic control system (dedicated controllers or PLC).
Non-derived ATSE: A specific designed ATSE with a specific controller for it. A mechanical interlocking system is standard for product which protects against electrical malfunctions or incorrect manual operations.

Manual source-changeover system
 (or MTSE: Manual Transfer Switching Equipment)

A very simple way to switch the load. It is controlled manually by an operator. The time required to switch from the ' N ' source to ' R ' source can vary.

Remote-operated source-changeover system (or RTSE: Remote Transfer Switching Equipment)

The most commonly used system for devices with high ratings. No direct human intervention is required. Source-changeover is controlled electrically.

System

2 or 3 circuit breakers that may have different configurations, linked by an electrical interlocking system.
In addition, a mechanical interlocking system protects against electrical malfunctions or incorrect manual operations.

Applications

Commercial and service sector

(operating rooms in hospitals, safety systems for buildings, computer rooms for banks and insurance companies, lighting and emergency lighting systems in malls, etc.), industry and infrastructure.

Applications

Buildings and infrastructure where the need for continuity of service is significant but not a priority: offices, small and medium-sized businesses.

Applications

Industry (assembly lines, engine rooms on ships, critical auxiliaries in thermal powerstations, etc.);
Infrastructure (port and railway installations, runway lighting systems, control systems on military sites, etc.).

Whatever the system, you benefit from our expertise!

For many years Schneider Electric's source changeover system have proved their reliability everywhere around the world, in most power dependable buildings. Switching is performed by ComPacT or MasterPacT circuit breakers, the ultimate references in industrial switchgear.

Maximized continuity

of service
> Energy availability is ensured whatever the external requirements (e.g. high power demand).
> Maintenance and replacement of the sources (N or R) can be done with no interruption of service.
You can maintain a continuous level of service and customer satisfaction.

Maximized safety

For LV electrical installations where safety and continuity of service are critical for people and/or equipment such as hospitals, airports, banks, malls, etc.

Optimized energy management

> Transfer the load to a replacement source according to external requirements.
> Manage power sources according to power quality and power costs.
$>$ Perform system regulation.
$>$ Switch to an emergency replacement source.
You are no longer dependent on your power supply (and supplier)!

Simplicity and reliability

> Simple installation on LV switchboard.
> Optimized size of the switchboard.
$>$ System based on pre-tested components.
> Compliance with IEC 60947-6-1.

TransferPacT

For maximum continuity of service...

Currents

From 40 to 400 A.

... in a wide range of applications

1 normal source
1 replacement source

2 sources with coupler on busbars

2 normal sources 1 replacement source

Generator or permanent source

QN	QR
0	0
1	0
0	1

Typical applications:
Continuous production processes

- Most distribution panels in
hospitals, including operating rooms
■omputer rooms...

General Contents

 TransferPacT
TransferPacT Automatic and Active Automatic

(Automatic Transfer Switching Equipment)

TransferPacT FXM

(MTSE/complete source changeover assembly)

TransferPacT: ComPacT and MasterPacT based
(Manual, Remote and Automatic TSE/source changeover systems)

TransferPacT Automatic and Active Automatic

TransferPacT Class PC A-2
General features A-4
Electrical and mechanical accessories A-8
Controller general features A-15
Control Mode and Transfer Logic. A-18
Automatic Transfer Switching Equipment A-41
Coding Principle A-54
References of TransferPacT Active Automatic and Automatic 32-160 A A-55
Circuit breaker/Transfer Switching Equipment coordination A-57
Fuses/Transfer Switching Equipment coordination A-61

TransferPacT Class PC

ATSE: Automatic Transfer Switching Equipment

(Non-derived ATSE,PC Type)

Definition of Class PC
Transfer switch equipment based on mechanical switching devices, that do not need electrical power to hold the main contacts open or closed and capable of making, carrying, and breaking currents under normal circuit conditions including operating overload conditions, and making and withstanding short-circuit currents.

Definition of ATSE(Automatic Transfer Switching Equipment)

Self-acting transfer switching equipment, including all necessary sensing inputs, monitoring, and control logic for transferring operations
TransferPacT automatic transfer switching equipment is a Class PC ATSE specially designed in accordance with IEC 60947-6-1 requirements for power transfer. It has great withstand capabilities to short circuits and reliable making, carrying and breaking capabilities. Thus keeping reliable connectivity of circuits.
It is an all in one, Non-derived ATSE.

TransferPacT Class PC

TransferPacT is a high speed, comPacT, modular design intelligent automatic transfer switch that provide maximum scalability and robust performance. It is a PC class ATSE designed according to IEC 60947-6-1, available through 32A to $160 \mathrm{~A}, 2,3,4$ pole with rated operating voltage through 220 V to 440 V .

Power availability

Maximized uptime:

Innovative technology ensuring transfer in less than 500 ms .

Vast application:

Utilization category AC-33B without derating, fits the most complicated load types.
Reliable under extreme condition:
Short circuit capabilities including short time withstand current for your power continuity.
Robust design - Extreme Environment Proof:

- Best-in-class electromagnetic protection, Exceeding industry standards on class B.

■ Designed to perform in harsh environments with operating temperature $-25 \ldots 70^{\circ} \mathrm{C}$
■ Successfully passed testing in compliance with IEC 60068-2-6 and IEC 60068-2-27.

Efficiency

Easy installation:

■ Built-in DPS and sensing wire, 30% commissioning time saving.

- Multiple installation adapted. E.g. DIN rail.

Enhanced scalability:

- 10 function modules plug and play, non-disruption upgrading.

Connectivity

Natively connected - Integrated in EcoStruxure ${ }^{\text {TM }}$ Power

- 24/7 Precise power monitoring on voltage, frequency, voltage unbalance, phase rotation.
- Predictive maintenance with hands-on approach and cloud-based monitoring software that synthesizes and analyzes performance and alert data into proactive recommendations. TransferPacT enables wherever-you-go visibility.

Cyber security

Designed according to cyber security standard IEC 62443 at the level of SL1.

Sustainability

Green premium ecolabel.

- Green Package for full product range.
- Saving trees - Scan QR code for full version for technical documents.

General features

Codes and standard

- IEC 60947-1 General rules
- IEC 60947-6-1 Transfer switching equipment

■ GB 14048.1 General rules
■ GB/T 14048.11 Transfer switching equipment
Certifications and declarations

- CB certification
- CE certification
- CCC certification
- UKCA declaration
- EAC declaration

Environmental conditions

- TransferPacTATSE can operate in an ambient temperature of $-25^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
- The altitude of the installation site shall not exceed 2000 m
- When the highest temperature is $+55^{\circ} \mathrm{C}$, the relative humidity in air shall not exceed 95\%
- Storage temperature: $-35^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Vibration and Shock

■ Tests are carried out in compliance with IEC 60068-2-6 and IEC 60068-2-27
Electromagnetic compatibility (EMC)

- EMC Class A
- EMI Class B
- Electrostatic discharge Level 4

■ Radio-frequency electromagnetic fineld Level 3

- Fast transient bursts Level 4
- Surges Level 4
- Harmonic wave Level 3
- Voltage dips and short-time interruptions Level 3

Degree of Pollution

- Pollution degree 3 as defined by IEC standard 60947

General features

General features

TransferPacT Active Automatic

TransferPacT Automatic

TransferPacT Automatic /TransferPacT Active Automatic
Frame

Conventional Thermal Current	Ith	at $60^{\circ} \mathrm{C}$
Rated operating current (A)	le	AC-33B
		AC-32B
Number of poles		
Operating positions		

Electrical characteristics as defined by IEC 60947-1 / 60947-6-1 and EN 60947-1 / 60947-6-1

General features

$155 \times 310 \times 94$

$155 \times 310 \times 94$	$164 \times 351 \times 95$
$155 \times 310 \times 94$	$164 \times 351 \times 95$
3.4	-
3.4	5.6
3.4	5.6

Electrical and mechanical accessories

Electrical and mechanical accessories

Electrical and mechanical accessories

Auxiliary contact module

- TPSAUX32: Provide the open and closed status indication for both source I and source II.
- TPSAUX33: Provide the open and closed status indication for OFF position.

Terminal Shield

Optional accessory, Provide terminal protection on the cable incoming and output.
■ TPSISO30: Terminal Shield for frame 100 (32-100 A) (set of 2)

- TPSISO31: Terminal Shield for frame 160 (80-160 A) (set of 3)

Interphase barrier

Optional accessory, Provide protection for the cable incoming and output, effectively avoiding short circuits between phases.
■ TPSISO29: Interphase barrier for frame 160 ($80-160$ A) (set of 9)

Load extension bars

External HMI

- Door mounted HMI provide exact same function as TransferPacT active automatic HMI Including status display, settings, event log, control transfer switch. It consists of an install base and LCD display. TPCCIF04

IP54 Cover

- Optional accessory, Protective cover for external HMI for outdoor installations. TPCOTH37.

HMI Cable

Used to connect the TSE and external HMI. 2*RJ45 port.

- TRV00810: cable length is 1 m
- TRV00820: cable length is 2 m
- TRV00830: cable length is 3 m

Electrical and mechanical accessories

Load shedding and availability warning

Function:

Load shedding

- The emergency power (Genset) sometimes may not afford all loads. A signal from controller will shed some non-critical loads
- Load shedding will send the signal after enabling this function

Availability warning output

- When transfer switch is not in auto or power lost on two sources, a dry contact will output the signal
- After back to Auto status or power recovery, the signal will be stopped

Compatibility: Active Automatic and Automatic
Rating: 250 VAC, 5 A or 30 VDC, 5 A
Digital output

Transfer inhibit and Remote testing

Function:

Transfer inhibit

- Transfer Inhibit when there is power interruption because of short circuit
- This function can be used to lock the controller by customized signals
\square This function can be used for cooperation with different ATSE
- Remove transfer inhibit signal to Exit this mode

Remote testing

\square Remote testing is an input signal to start test procedure.

- The remote test can only be started at Auto mode
- For Active Automatic HMI, on load, off load test and time duration can be selected.
- For Automatic HMI, on load test is unlimited.

Compatibility: Active Automatic and Automatic
Dry Contact
Digital input

Voluntary Remote control

Function:

Voluntary transfer to \mathbf{N} or \mathbf{A}

- Voluntary transfer is an active input. It can transfer the ATSE to Normal or Alternate source according to requirements (such as energy saving)
- Voluntary transfer will still keep the power continuity as much as possible. The function will be bypassed if target source loses the power. For example, after voluntary to A while A source failed, ATSE will transfer back to N if N is available ■ Exit voluntary mode after signal disappeared

Force to Off

- An emergency stop order to transfer ATSE to off position. All the other transfer mode will be canceled except handle control
- Exit Force after signal disappeared

Compatibility: Active Automatic and Automatic
Dry Contact
Digital input

Electrical and mechanical accessories

Fire protection

Function:

The fire protection signal can transfer ATSE to off position when there is fire emergency and protect power continuity for critical loads.

- Fire protection with input of DC 24 V pulse signal. Input Voltage:

24 VDC (-20\% ~ +20\%), Maximum Input Current: 10 mA

- Fire protection with input of DC24 V Constant signal. Input Voltage: 24 VDC (-20\% ~ +20\%), Maximum Input Current: 10mA
- Fire protection with input of AC230 V Constant. Input Voltage: 230 VAC (-20\% ~ +20\%), 50 Hz/60 Hz Maximum Input Current: 10 mA
- Fire protection with 1 input, dry contact

Compatibility: Active Automatic and Automatic
Digital input

BUS Extension and 24 VDC Auxiliary Supply

Function:

BUS extension
■ Can be used to connect external HMI

DC 24V Auxiliary Supply

■ External power for controller when both source failure

- External power to keep power for Modbus communication when both source failure Compatibility: Active Automatic
Rating: Input Voltage: 24 VDC (-20\% ~ +20\%), Maximum Input Current: 1 A

Modbus RTU (Serial Port)

Function:

Modbus

- Can be used to connect with other system
- Require External 24 V or at least one main source to keep communication
- With Protocol Modbus RTU communication

Compatibility: Active Automatic

Genset Start and Alarm

Function:

Genset start output

- When utility source is lost, a dry contact will start Genset. No matter with or without external 24 V , a time delay (T7) before genset start can be set
- When Utility source has recovered, and ATSE has transferred back to Utility, Genset signal will remain until end of Genset cooldown timer
Alarm
■ When there is critical alarm, a dry contact will output the signal
- Restart controller (open and close dielectric door) to shut down the Alarm

Compatibility: Active Automatic and Automatic
Rating: 250 VAC, 5 A or 30 VDC, 5 A
Digital output
Note: The alarm signal is irrelevant to generator start or stop. It is relevant to transfer errors and phase rotations errors, for more detail, refer to DOCA0214EN-00

Controller general features

TransferPacT provide advanced microprocessor controller with two options: Active automatic HMI (LCD display and keypad) and automatic HMI (Rotary and DIP switch). It is a robust and reliable controller which offers all of the voltage, frequency, control,timing and diagnostic functions required for wide range of power applications Automatic HMI is easy install and use, while active automatic HMI contains every function needed with 8 control modes.

There are two key breakthroughs for TransferPacT controller:

$■$ Active automatic HMI and automatic HMI can be swapped, that means an easy way to upgrade your controller, or replace it for maintenance or renewal.

- 10 types of function modules can be installed on TransferPacT controller, at any time, which provide maximum scalability and a reduced Total Cost of Ownership, since you can add a function as demand grows.

Controller type		Active Automatic with LCD display	Automatic with setting by rotary switch
Installation		Embedded controller	Embedded controller
Controller Functional Characteristics			
2P		230 V : can be set at $220 \mathrm{~V} / 240 \mathrm{~V} / 250 \mathrm{~V}$	230 V : can be set at $220 \mathrm{~V} / 240 \mathrm{~V} / 250 \mathrm{~V}$
3P/4P		400 V : Can be set at $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V}$	400 V : Can be set at $380 \mathrm{~V} / 415 \mathrm{~V} / 440 \mathrm{~V}$
Rated operating frequency (Hz)		50/60	50/60
Rated insulation voltage (V)		500	500
Impulse withstand voltage (KV)		6 kV	6 kV
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Operating altitude		$\leq 2000 \mathrm{~m}$	$\leq 2000 \mathrm{~m}$
Protection degree		IP20	IP20
Pollution degree		3	3
Accuracy (for power deviation)	Voltage	1\%	1\%
	Frequency	0.1\%	0.1\%
Electrostatic discharge		Level 4	Level 4*
Radio-frequency electromagnetic field		Level 3	Level 3
Fast transient bursts		Level 4	Level 4
Surges		Level 4	Level 4
Harmonic wave		Class 3	Class 3
Voltage dips and short-time interruptions		Level 3	Level 3
Vibration		IEC 60068-2-6	IEC 60068-2-6
Shock		IEC 60068-2-27	IEC 60068-2-27
Display of Controller			
Display mode		LCD + LED + Indicator	Rotary switch + DIP switch + LED + Indicator
Single line diagram		\square	\square
Language		English/Chinese/French/Russian/Spanish/ Italian/German/Portuguese	Not Applicable
Power status		\square	\square
Position for contact (electrical indication)		\square	\square
Set value		Button	Rotary switch + DIP switch
Controll Mode			
Auto	Auto return	\square	\square
	Non return	\square	\square
Non-Auto	Handle	\square	\square
	Force	\square	\square
	Fire	\square	\square
	Inhibit	\square	\square
	Local	\square	-
	Voluntary	\square	\square
	Test	\square	\square

[^0]
Electrical and mechanical accessories

Controller type	Active Automatic with LCD display	Automatic with setting by rotary switch
Auto Control		
Sampling	Three Phase for both Normal and Alternate	Three Phase for both Normal and Alternate
Voltage loss	< 36 V	< 36 V
Phase loss	L1, L2, L3	L1, L2, L3
Under voltage Set value	70\% to 95\%	$\begin{gathered} 4 \%, 6 \%, 8 \%, 10 \%, 12 \%, 14 \%, 16 \%, 18 \%, \\ 20 \% \end{gathered}$
Over voltage Set value	105\% to 135\%	$\begin{gathered} 4 \%, 6 \%, 8 \%, 10 \%, 12 \%, 14 \%, 16 \%, 18 \%, \\ 20 \% \end{gathered}$
Under frequency Set value	80\% to 98\%	2\%, 3\%, 4\%, 5\%, 6\%, 7\%, 8\%, 9\%, 10\%
Over frequency Set value	101\% to 120\%	2\%, 3\%, 4\%, 5\%, 6\%, 7\%, 8\%, 9\%, 10\%
Unbalance of three phase voltage	2\% to 30\%	-
Phase rotation	Yes	-
Time Delay		
Transfer delay	0-30 minutes	U-U:0, 1, 2, 3, 5, 10, 20, 30, $60 \mathrm{~s} . \mathrm{U-G}: 5 \mathrm{~s}$
Retransfer delay	0-60 minutes	$0,1,2,3,5,10,20,30,60 \mathrm{~min}$
Center off delay	0-30 s	0 or 5 s
Genset start delay	0-120 s	$0,1,2,3,5,10,20,30,60$ s
Genset cooldown delay	0-60 minutes	-
Loadshedding delay	0-15 s	-
Genset ready alarm delay	15-300 s	300 s
Test delay:on load	1-1800 s	
Test delay:off load	1-1800 s	
Other Functions		
Calendar time	\square	-
Position feedback (mechnical)	\square	\square
Event log	\square	-
Source priority	\square	\square
Communication	Modbus RTU	-
Transfer Inhibit	\square	\square
Password protection	\square	-
Gen start-stop	\square	\square
Test	\square	\square
Load shedding	\square	\square
Fire protection	\square	\square
Failure lock	\square	\square
Alarm Indication	\square	\square
External power supply port (auxiliary supply)	\square	-
Wrong connection of neutral alarm	\square	-

[^1]
Controller general features

Active Automatic HMI (With LCD Display) Description

Label	Description
A	Navigation button to return to previous page
B	Navigation button of rolling up
C	Navigation button of rolling down
D	OK button to confirm any status

Automatic HMI (With Rotary Switch) Description

Label	Description
A	Rated frequency
B	Time delay for off position C = Utility/Utility $=$ Utility/Genset"
D	Source priority
E	Transition mode for return to normal position
F	Nominal voltage
G	Voltage and frequency thresholds setting H
Iransfer time delay in seconds from normal source to	
	Transfer time delay in minutes from alternate source to normal source

Controller general features

Single Line Diagram Description

Label	Description
A	Source I power status indicator
B	Contact position of source I
C	Contact position of source II
D	Source II power status indicator
E	Alarm indicator
F	"Not in Auto" status indicator
G	Power ON indicator

Controller general features

Single Line Diagram LEDs

LED indication	Status	Description
0	－－－－－	No energy，ATSE power off
	$\stackrel{400 \mathrm{~ms}}{\overbrace{-}}$	ATSE updating in process or in Test mode in progress
	\square	ATSE is running in normal operation，ready to transfer
Adxo	－－－－－	The ATSE is running in Auto mode
	\square	ATSE is＂Not in Automatic＂mode，and will not automatically transfer in case of source failure．
$!$	－－－－－	No alarm
	\square	Alarm is active
SI	－－－－－	No Source I
	$\stackrel{400 \mathrm{~ms}}{\cap}$	Source I out of range
	\square	Source I present and in the range
SII	－	No Source II
		Source Il out of range
	」	Source Il present and in the range
－1	－－－－－	Source I is opened（Not connected）
	$\stackrel{400 \mathrm{~ms}}{\text { H月n }}$	Time delay is running for transferring
	－	Source Il is opened（Not connected）
－II	－－－	Source II is opened（Not connected）
		Time delay is running for transferring
	」	Source II is closed（Connected）

NOTE：The LED indicator on the equipment and the external HMI is for reference．In the event of a contradiction between the LED and the mechanical indication，the latter prevail．

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Control Mode

Over view

The control mode is used to operate TSE in different applications. The TransferPacT Active automatic contains every function needed with eight control modes:

- Auto mode
- Test mode
- Voluntary transfer mode
- Local control mode
- Transfer inhibit mode
- Fire protection mode
- Force to off mode
- Handle transfer mode

The TransferPacT Automatic contains below control modes:

- Auto mode
- Test mode
- Voluntary transfer mode
- Transfer inhibit mode
- Fire protection mode
- Force to off mode
- Handle transfer mode

Priority of Control Mode

Type of mode	Handle	Force	Fire	Inhibit	Local	Voluntary	Test	Auto
Handle Transfer mode	-	I	I	1	I	1	I	1
Force to OFF mode	x	-	1	1	1	I	1	I
Fire Protection mode	x	x	-	1	1	1	I	1
Transfer Inhibit mode	x	x	x	-	1	1	1	1
Local Control mode	x	x	x	x	-	I	I	I
Voluntary Transfer mode	x	x	x	x	X	-	1	1
Test mode	x	x	x	x	x	x	-	I
Auto mode	x	x	X	x	x	x	x	-

[^2]X = Ignore

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Auto Mode

ATSE works on auto control mode normally. The controller monitors the real time values of both the sources. When there is source contingency, the transfer action will be energized to keep the power continuity for critical source.
Auto mode supports U-G or U-U applications.
NOTE: Auto transfer will not be active, if transfer action damages driving system (for example, both are out of range, TSE refuses to transfer).
There are two types of auto control mode:

- Auto-return
- Non-return

Naming		Condition for stay on A situation return
power source definition	N available	N available
	A available	A unavailable
Auto-return	Switch to N	Switch to N
Non-return	Stay at A	Switch to N

Auto return

The Auto return has two modes as below:

- When the voltage on the N source exceeds the threshold (overvoltage, undervoltage, over frequency, under frequency) or does not exist, the ATSE will be transferred to the A source.
- When the voltage on the N source is within the threshold range, the ATSE will be transferred to N source.

The process of transfer can be controlled by time delay.

Transfer Process for Auto return U-U Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	status
T2	Transfer delay
T8	Loadshed Delay
T4	Center-off Delay

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Symbols	Description
T6	Re-Transfer Delay
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	
\quad : no Power	

Transfer Logic for Auto return U-U Application

Transfer Logic

[^3]
Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Retransfer Logic

■ T2 will reset if N becomes unavailable

- T6 will reset if N becomes unavailable
\square During T6, if A is not available it will keep to count $T 6$ if the rest time of T6 is shorter than T2. Other wise it goes to T2
Retransfer principles: when source A ok, retransfer goes to T6, when source A not ok and source A is utility, retransfer goes to T2. If source A is Genset and not ok, retransfer delay is 0 .

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	status
T7	Genset Start Delay
T2	Transfer delay
T8	Loadshed Delay
T4	Center-off Delay
T6	Re-Transfer Delay

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Symbols	Description
T9	Genset Cool Delay
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	
$\quad:$ No Power	

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Transfer Logic for U-G Application

Transfer Logic

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Retransfer Logic

- T2 will reset if N becomes unavailable

- T6 will reset if N becomes unavailable
- During T6, if A is not available it will keep to count T6 if the rest time of T6 is shorter than T2. Other wise it goes to T2

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Non-return

In the non-return mode, after auto transfer to replacement, the ATSE will be connected to the alternate source until:

- An external order is given to transfer back to N source.
- The alternate source is out of range. In such case, the ATSE controller will transfer back to the N source to maintain power availability.
There will be only one time power off, when there is normal power outage.

Symbols	Description
Un	Source I
Ua	Source II
On	contact close at N source
Oa	contact close at A source
Load	status
T2	Transfer delay
T8	Loadshed Delay
T4	Center-off Delay
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Logic of Non-return for U-U Application

* T 2 will reset if N becomes unavailable or A becomes unavailable

[^4]
Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Transfer Process of Non-return for U-G Application

Symbols	Description
Un	Source I
Ua	Source II
On	Contact close at N source
Oa	Contact close at A source
Load	status
T7	Genset Start Delay
T2	Transfer delay
T8	Loadshed Delay
T4	Center-off Delay
T9	Genset Cool Delay
Key	
O: OFF (circuit open)	
I: ON (circuit closed)	

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Logic of Non-return for U-G Application

- T2 will reset if N becomes unavailable or A becomes unavailable
- If disable Genset Start Fail Warning, T10 will not be counted

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Retransfer Logic

* T 2 will reset if N becomes unavailable

Voluntary Transfer Mode

The voluntary transfer mode is equivalent to auto-priority mode on one source, with forced priority to the SI or SII source. It is activated when associated input is closed (The commercial reference number for the voluntary control module is TPCDIO08). It takes over 200 ms to active the voluntary mode. The signal for voluntary transfer should be constant.
Voluntary transfer is normally used for special tariffs. Once the mode is set from voluntary to N or A , ATSE is still remains in auto mode. When there is power contingency on target source, transfer switch can re-transfer to available source automatically.

NOTE: Auto transfer will not be active, if transfer action damages driving system (for example, both source are out of range, TSE refuses to transfer).
The following are the voluntary transfer mode use cases:

Use Case 1: Typhon Mode

During typhoon or earthquake, the Genset will be more stable than utility. The user for this case has installed a typhoon mode switch on his control panel. The user will activate the typhoon mode switch. It is connected to the input voluntary transfer mode which will transfer to alternate source (need accessory to have function of voluntary transfer using TPCDIO08 accessories). The ATSE will now activate the Genset output and will transfer to Genset once ready.

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Now during the typhoon, the Genset is flooded. The ATSE will still be in auto mode. It detects alternate source failure. If the normal source is fine, it will try to transfer to normal source (voluntary is still an auto mode, and we have auto-return). If the normal source is not available then ASTE will not do any transfer.
Still during typhoon, the Genset can restart (it was a fuel level problem). As the typhoon mode switch is still enabled, the ATSE will transfer back to the Genset. The Genset output keeps activate.
So, whatever the source is connected, the typhoon is gone. The utility is back to normal. The user will deactivate the typhoon mode switch. The ATSE will be transfer back to normal source at auto mode with auto-return, U-G.
The configuration needed is a ATSE along with voluntary transfer module. With this configuration, the user don't need to play with any ATSE settings (return mode, priority source, what is the normal source).

Use Case 2: Peak Tariff (Align with Controller UA/BA)

Initially this feature was created in UA BA in France for Special Tariff Fare (STF) capability. Special Tariff Fare (STF) in France is a special electricity pricing that allows to have discount price on low consumption hours, with the drawback of having a very expensive kWh price on peak hours. With this option, EDF (French utility) provides an output on the energy meter to warn the end user about the price increase. This output is wired on the voluntary transfer input of the controller, which automatically transfers the load to a cheaper alternate source. This allows to help shedding the peaks on the network

Transfer Logic of Voluntary to A (U-U Application)

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Transfer Logic of Voluntary to N (U-U Application)

* T11 is internal fixed time delay

Transfer Logic of Voluntary to A (U-G Application)

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Transfer Logic of Voluntary to N (U-G Application)

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Test Mode

The test mode is a procedure to simulate the transfer process with following purpose:

- Test normal transfer actions for ATSE-On load test.
- Test Genset-Off load test
- Test Genset-Transfer functions-On load test

Ways Test

There are two ways to conduct the test:

- Through Active Automatic HMI.
- Through DI using TPCDIO07 accessories.

No priority difference between HMI command or DI command. ATSE will act upon receiving the command given.

Default Time for Test

■ Default as unlimited test (No time duration, has to stop the test manually).
■ If select limited test, the default time duration is 30 s .

Time Range for Test

- $10 \mathrm{~s}-1800 \mathrm{~s}$ with steps of 1 s .
- Time delay can be bypassed by pressing ESC key in Active Automatic HMI.

Pre-Condition to Start Test Mode

The following conditions are mandatory for the test:
\square ATSE is in auto mode.

- ATSE is in normal position while in U to U Application.
\square ATSE is in alternate position while in U to U Application.
- ATSE is in normal position while in U to G Application.
- For U-U application, R source shall be available before test. Otherwise, there will be an alarm.

NOTE: On load test will not be active, if transfer action damage driving system (for example, both source are out of range, TSE refuses to transfer).

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Off Load Test

- The purpose of this function is to check the Genset can start, without power interruption.

NOTE:

\square This test does not check if the switch is able to make the transfer.
\square The test is only available with U-G configuration.

- The offload test should not be proposed, when the ATSE doesn't have Genset output feature.
- This function will only be accessible for product with HMI, as the Test mode default value is On load.
- The orders from higher priority will interrupt the test procedure.

Logic of Off Load Test U-U

T14 is Unlimited

T14 is Limited

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

On Load Test

- The purpose of this function is to execute ATSE transfer (when the source is still valid) to make sure the system is still able to execute the transfer. The UU and U-G configuration are both available.
- When the ATSE receive the testing start request:
\square The ATSE shall initiate the transfer to the Alternate source if the Alternate source is in range, and according to the transfer delays (T7, T2 ...).
\square The ATSE shall log a test start event.
■ Two conditions to return to N source:
\square When the ATSE receive the stop request from user.
\square When the Test timer is activated, and the test timer is completed.

Logic of On Load Test U-U

Limited Test

Unlimited Test

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Logic of On Load Test U-G

Limited Test

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Return or Start from Auto Mode at Off Position

When switch is at OFF position, this state is interim, and it happens under two conditions:

- Enter the auto mode from other modes or from power on.
- End of off delay (T4), ATSE is unable to switch to N or A, due to both power source loss (with 24 V). The load shedding will be activated from OFF to A source in both U-U and U-G configuration.

Local Control Mode

ACAUTION
HAZARD OF EQUIPMENT DAMAGE
Enable the local control through Active Automatic HMI to exit the auto mode.
Failure to follow these instructions can result in injury or equipment damage.

NOTICE
POTENTIAL POWER OUTAGE OF EQUIPMENT
To re-enter Auto mode, disable local control through Active Automatic HMI or
External HMI.
Failure to follow these instructions can result in equipment damage.

The local mode is activated through the HMI (only available for Active Automatic, RS version change to Automatic). It allows locally to change the logical position of the TSE. The switch will refuse to active if the action will damage the driving system. It cannot transfer to unavailable source.

NOTE: Local transfer will not be active, if transfer action damage driving system (for example, both overvoltage are out of range, TSE refuses to transfer) or both sources are out of operating voltage of solenoid.
Auto Genset start signal and load shedding signal is not available for this mode. In this case, the target source conformity is verified before transfer and time delays are not considered.

Control Mode and Transfer Logic Transfer Switching Equipment 32-160 A

Local Control to N

The command is sent through HMI. There is no time delay except OFF delay.
The switch will transfer to normal after receiving the order to it when normal power is in tolerance.

Local Control to A

The command is sent through HMI. There is no time delay except OFF delay.
The switch will transfer to alternate after receiving the order to it when alternate power is in tolerance.

Local Control to O

The command is send through HMI. There shall be no time delay. The switch will transfer to OFF after receiving the order to it.

Control Mode and Transfer Logic
 Transfer Switching Equipment 32-160 A

Transfer Inhibit Mode

When the transfer inhibition input is active, the controller can not send any order to TSE. Front face selection buttons are locked and the HMI only display transfer inhibit.
Fire, Force to OFF and Handle mode still works as before. When exit Fire, Force to OFF and Handle mode, transferring blocked by transfer inhibit.
Use this mode only when inhibit signal (from DI) is active and no higher operation mode is running. When ATS transfer is ongoing, wait until transfer completed.
Exit this mode after inhibit signal is inactive.
Accessories are required using TPCDIO07 to extend this function of the TSE.

Application

- Transfer inhibit occurs when there is power interruption because of short circuit.
- This function can be used to lock the controller by customized signals.
- This function can be used for cooperation with different ATSE.

Fire Protection Mode

- An emergency stop order to transfer ATSE to off position. All the other transfer mode will be canceled except force to OFF and handle control. There shall be no time delay.
- Exit fire protection after signal disappeared.
- Require accessories TPCDIO10 or TPCDIO11 or TPCDIO13 or TPCDIO14 to extend this function.
- Fire protection will not be actived if transfer action damages driving system.

Application

- The fire protection signal can transfer ATSE to off position when there is fire emergency and protect power continuity for critical loads.

Force to OFF Mode

- Transfer ATSE to OFF position with an emergency stop order. All the other transfer mode will be canceled except handle control. There should be no time delay.
- Exit Force after signal disappeared.
- Accessories are required using TPCDIO07 to extend this function of TSE.

Handle Transfer Mode

- The handle or manual transfer mode is activated from the TSE directly. It deactivates the controller control function except position status (outputs and LEDs), source status LEDs and alarm LED.
- No operation for load shedding and generator, keep the status as before.
- No alarm relay output.

Automatic Transfer Switching Equipment

Class PC

TransferPacT Active Automatic and Automatic
Frame 100/2P, 3P, 4P
Minimum electrical Clearance

Bare product

With Terminal Shield

Busbar to base plate

Busbar to base plate

With Auxiliary Contact

Automatic Transfer Switching Equipment

Class PC

TransferPacT Active Automatic and Automatic
Frame 160/3P, 4P

Minimum electrical Clearance

Bare product

With Terminal Shield

Crimp lug to base plate

With Auxiliary Contact

With Interphase barriers

Busbar to base plate

Automatic Transfer Switching Equipment

Class PC
TransferPacT Active Automatic and Automatic
Frame 100/2P, 3P, 4P

Dimensions

Panel and Front panel cut

Frame	L	W	H	A	B	C	D	E	F	H1	H2	H3
100	310	147	94	45	82	17.5	18	90	125	15	79.5	11

Automatic Transfer Switching Equipment

Class PC

TransferPacT Active Automatic\&Automatic
Frame 160 / 3P, 4P
Dimensions

Panel and Front panel cut

Frame	L	W	H	A	B	C	D	E	F	H1	H2	H3
160	351	164	95	45	82	28	30	105		80	15	

Automatic Transfer Switching Equipment TransfePacT Active Automatic

Class PC

External HMI

Overview

The external HMI is used to display the HMI on the panel. The HMI consists of external HMI base and a LCD screen.
The external HMI must be connected with the function module with commercial reference as TPCDIO15. The connection of the external HMI is done using a cable and an external HMI base and LCD display.

Position of External HMI and Switch

Perform the following procedure to connect the external HMI on the panel door.

1. Rotate the external HMI to the back side.
2. Remove the nut of external HMI.
3. Insert the external HMI on the front door.

NOTE: Please make the cutout on the front door as per the dimension given.
4. Insert the nut.
5. Lock the nut.
6. Insert the cable into the external HMI.
7. Insert the other end of the cable into the function module (TPCDIO15).

Automatic Transfer Switching Equipment

TransferPacT Active Automatic and Automatic

Auxiliary Contact

Automatic Transfer Switching Equipment

Class PC
TransferPacT Active Automatic TreansferPacT, Frame 100, Wiring capacity

Dimensions for Frame 100

Pole partition	(mm)	18
Cable-Rigid	$\mathrm{L}(\mathrm{mm})$	$\leqslant 13$
Cu/Al	$\mathrm{S}\left(\mathrm{mm}^{2}\right)$	$\leqslant 1.5-35$

Cable-Flexible	$\mathrm{L}(\mathrm{mm})$	$\leqslant 13$
Cu/Al	$\mathrm{S}\left(\mathrm{mm}^{2}\right)$	$\leqslant 1-35$

Bar	$W(\mathrm{~mm})$	$\leqslant 10$
	$D(\mathrm{~mm})$	$\leqslant 5$

\qquad

Torque	(Nm)	3.5 ± 0.3

Dimensions for Frame 160

	Pole partition	(mm)
Bars	$\mathrm{A}(\mathrm{mm})$	30
	$\mathrm{~B}(\mathrm{~mm})$	$\leqslant 20$
	$\mathrm{C}(\mathrm{mm})$	$\leqslant 6$
	$\mathrm{D}(\mathrm{mm})$	$12 \leqslant \mathrm{D} \leqslant 14$
	$\varnothing(\mathrm{~mm})$	$\geqslant 6.4$

Cable with Crimp Lug	$\mathrm{A}(\mathrm{mm})$	$\leqslant 20$
	$\mathrm{~B}(\mathrm{~mm})$	$\leqslant 6$
	$\mathrm{C}(\mathrm{mm})$	$\leqslant 6$
	$\varnothing(\mathrm{~mm})$	$\geqslant 6.4$

	(Nm)	8 ± 0.8

Installation recommendation

Use at high temperatures

Power dissipated and resistance per pole

TranferPacT	40	63	80	100	125	160
Rating (A)	40	63	80	100	125	160
Resistance per pole $(\mathrm{m} \Omega)$	0.3	0.3	0.3	0.2	0.2	0.2
Power dissipated per pole (W)	0.5	1.2	1.9	2	3.1	5.1

Temperature derating

TranferPacT		40	63	80	100	125	160
Front connection with bare-cable connectors or lugs							
Thermal current Ith at	$60^{\circ} \mathrm{C}$	40	63	80	100	125	160
	$65^{\circ} \mathrm{C}$	40	63	80	100	125	160
	$70^{\circ} \mathrm{C}$	40	63	80	100	125	150
TransferPacT		100	160				
Front connection							
Thermal current Ith at	$60^{\circ} \mathrm{C}$	100	160				
	$65^{\circ} \mathrm{C}$	100	160				
	$70^{\circ} \mathrm{C}$	100	160				
Front connection with right-angle terminal extension + bare-cable connectors							
Thermal current Ith at	$55^{\circ} \mathrm{C}$	100	160				
	$60^{\circ} \mathrm{C}$	100	160				
	$65^{\circ} \mathrm{C}$	100	160				
	$70^{\circ} \mathrm{C}$	100	160				

Automatic Transfer Switching Equipment TransferPacT Active Automatic and Automatic

Wiring Diagrams for frame 100: 32-100 A

3P/4P

Automatic Transfer Switching Equipment TransferPacT Active Automatic and Automatic

Automatic Transfer Switching Equipment TransferPacT Active Automatic and Automatic

Wiring Diagrams for frame 160: 80-160 A

3P/4P

Automatic Transfer Switching Equipment Function Module

| | Maximum Qty per | Ternminal code | terminal definition |
| :--- | :--- | :--- | :--- | :--- |

NOTE: for detailed function module terminal definition and default settings, refer to user guide DOCA0214EN-00

Automatic Transfer Switching Equipment Auxiliary Contact

TPSAUX32

(A) SI open
(B) SI closed
(C) SII open
(D) Sll closed

Transfer switching equipment is closed at SI : - F11-F14 is closed

- F11-F12 is opened

Transfer switching equipment is closed at SII:

- F21-F24 is closed
- F21-F22 is opened

Transfer switching equipment is at OFF position:

- F11-F12 and F21-F22 are closed
- F11-F14 and F21-F24 are opened

TPSAUX33

Transfer switching equipment is at OFF position:
F12-F22 is closed

Transfer switching equipment is not at OFF position: F11-F14 and F21-F24 are closed

NOTE: terminal capacity for auxiliary contact is AC250 V 2 A .

Coding Principle

The commercial reference of TranferPacT Automatic Transfer Switching Equipment is coded with significant features to explain the type of frame rating,transition, controller type, rated voltage, rated current and number of poles

References of TransferPacT Active Automatic and Automatic 32-160 A

| TransferPacT | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

References of TransferPacT Active Automatic and Automatic 32-160 A

| | | | |
| :--- | :--- | :--- | :--- | :--- |

Circuit breaker/Transfer Switching Equipment coordination Upstream: Acti9 iC60, C120, NG125
 Downstream: TransferPacT Automatic TA10D, TA16D

Ue: ≤ 415 V AC

Load side			TA10D						TA16D			
		Rating (A)	32	40	50	63	80	100	80	100	125	160
		Ith (A) $60^{\circ} \mathrm{C}$	32	40	50	63	80	100	80	100	125	160
		Icw (kA)	3	3	3	3	3	3	5.5	5.5	5.5	5.5
		Icm (kAp)	15	15	15	15	15	15	20	20	20	20
Supply side		Icu										
Circuit breaker:	Rating	415 V	TSE conditionnal short-circuit current and related making capacity:									
iC60N	<= 32	10	T	T	T	T	T	T	T	T	T	T
B-C-D Curves	40	10		T	T	T	T	T	T	T	T	T
	50	10			T	T	T	T	T	T	T	T
	63	10				T	T	T	T	T	T	T
iC60H	<= 32	15	T	T	T	T	T	T	T	T	T	T
B-C-D Curves	40	15		T	T	T	T	T	T	T	T	T
	50	15			T	T	T	T	T	T	T	T
	63	15				T	T	T	T	T	T	T
iC60L	< 25	25	T	T	T	T	T	T	T	T	T	T
B-C-D-K-Z Curves	32	20	T	T	T	T	T	T	T	T	T	T
	40	20		T	T	T	T	T	T	T	T	T
	50	15			T	T	T	T	T	T	T	T
	63	15				T	T	T	T	T	T	T
C120N	63	10				T	T	T	T	T	T	T
B-C-D Curves	80	10					T	T	T	T	T	T
1P 240V	100	10								T	T	T
2,3,4P 415V	125	10									T	T
$\underline{\mathrm{C} 120 \mathrm{H}}$	63	15				T	T	T	T	T	T	T
B-C-D Curves	80	15					T	T	T	T	T	T
1P 240V	100	15								T	T	T
2,3,4P 415V	125	15									T	T
NG125N	<= 32	25	T	T	T	T	T	T	T	T	T	T
B-C-D Curves	40	25		T	T	T	T	T	T	T	T	T
	50	25			T	T	T	T	T	T	T	T
	63	25				T	T	T	T	T	T	T
	80	25					T	T	T	T	T	T
	100	25								T	T	T
	125	25									T	T
NG125H	<= 32	36	T	T	T	T	T	T	T	T	T	T
C-Curve	40	36		T	T	T	T	T	T	T	T	T
	50	36			T	T	T	T	T	T	T	T
	63	36				T	T	T	T	T	T	T
	80	36					T	T	T	T	T	T
NG125L	<= 32	50	T	T	T	T	T	T	T	T	T	T
C-Curve	40	50		T	T	T	T	T	T	T	T	T
	50	50			T	T	T	T	T	T	T	T
	63	50				T	T	T	T	T	T	T
	80	50					T	T	T	T	T	T

T	: Protection of the Transfer Switching Equipment is ensured but combination not very relevant
T	: Transfer Switching Equipment is totally coordinated up to the Icu of the circuit breaker installed on supply side
36/75	: Transfer Switching Equipment is protected up to $36 \mathrm{kA} \mathrm{rms} / 75 \mathrm{kA}$ peak
	: Protection of the Transfer Switching Equipment is not ensured.

Circuit-breaker/Transfer Switching Equipment coordination Upstream: ComPacT NSXm
 Downstream: TransferPacT Automatic TA10D, TA16D

Ue: ≤ 440 V AC

Load side				TA10D						TA16D			
	Rating (A)			32	40	50	63	80	100	80	100	125	160
 				32	40	50	63	80	100	80	100	125	160
				3	3	3	3	3	3	5.5	5.5	5.5	5.5
				15	15	15	15	15	15	20	20	20	20
Circuit breaker:	415 V	440 V	$\operatorname{lr}(\mathrm{A})$	TSE conditionnal short-circuit current and related making capacity:									
NSXm E TMD Micrologic 4.1	16	10	Ir <= 32	T	T	T	T	T	T	T	T	T	T
			Ir < <40		T	T	T	T	T	T	T	T	T
			Ir $<=50$			T	T	T	T	T	T	T	T
			Ir $<=63$			T	T	T	T	T	T	T	T
			Ir $<=80$					T	T	T	T	T	T
			Ir < $=100$						T		T	T	T
			Ir $<=125$									T	T
			Ir < $=160$										T
$\overline{\text { NSXm B }}$ TMD Micrologic 4.1	25	20	Ir $<=32$	T	T	T	T	T	T	T	T	T	T
			Ir $<=40$		T	T	T	T	T	T	T	T	T
			Ir $<=50$			T	T	T	T	T	T	T	T
			Ir $<=63$			T	T	T	T	T	T	T	T
			Ir $<=80$					T	T	T	T	T	T
			Ir $<=100$						T		T	T	T
			Ir $<=125$									T	T
			Ir $<=160$										T
$\begin{aligned} & \hline \text { NSXm F } \\ & \text { TMD } \\ & \text { Micrologic } 4.1 \end{aligned}$	36	35	Ir $<=32$	T	T	T	T	T	T	T	T	T	T
			Ir $<=40$		T	T	T	T	T	T	T	T	T
			Ir $<=50$			T	T	T	T	T	T	T	T
			Ir $<=63$			T	T	T	T	T	T	T	T
			Ir $<=80$					T	T	T	T	T	T
			Ir $<=100$						T		T	T	T
			Ir $<=125$									T	T
			Ir $<=160$										T
$\overline{\mathrm{NSXm} \mathrm{~N}}$ TMD Micrologic 4.1	50	50	Ir $<=32$	36/75	36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=40$		36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=50$			36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=63$				36/75	36/75	36/75	T	T	T	T
			Ir $<=80$					36/75	36/75	T	T	T	T
			Ir < $=100$						36/75		T	T	T
			Ir $<=125$									T	T
			Ir $<=160$										T
NSXm N TMD Micrologic 4.1	70	65	Ir $<=32$	36/75	36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=40$		36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=50$			36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=63$				36/75	36/75	36/75	T	T	T	T
			Ir $<=80$					36/75	36/75	T	T	T	T
			Ir $<=100$						36/75		T	T	T
			Ir $<=125$									T	T
			Ir < $=160$										T

[^5]
Circuit-breaker/Transfer Switching Equipment coordination Upstream: ComPacT NSX100-250
 Downstream: TransferPacT Automatic TA10D, TA16D

Ue: ≤ 440 V AC

Load side				TA10D						TA16D			
			Rating (A)	32	40	50	63	80	100	80	100	125	160
Supply side Circuit breaker			Ith (A) $60^{\circ} \mathrm{C}$	32	40	50	63	80	100	80	100	125	160
			Icw (kA)	3	3	3	3	3	3	5.5	5.5	5.5	5.5
			Icm(kAp)	15	15	15	15	15	15	20	20	20	20
	$\overline{\mathrm{Icu}}$ (kA)												
	415 V	440 V	Ir	TSE conditionnal short-circuit current and related making capacity:									
NSX100B NSX160B TMD/TMG/ Micrologic	25	20	Ir < $=32$	T	T	T	T	T	T	T	T	T	T
			Ir $<=40$		T	T	T	T	T	T	T	T	T
			Ir $<=50$			T	T	T	T	T	T	T	T
			$\mathrm{lr}<=63$				T	T	T	T	T	T	T
			Ir < $=80$						T		T	T	T
			Ir $<=100$						T		T	T	T
			Ir $<=125$									T	T
			\|r $<=160$										T
$\overline{\text { NSX250B }}$ TMD/TMG/ Micrologic	25	20	Ir $<=32$	T	T	T	T	T	T	T	T	T	T
			$\mathrm{lr}<=40$		T	T	T	T	T	T	T	T	T
			Ir < $=50$			T	T	T	T	T	T	T	T
			Ir $<=63$				T	T	T	T	T	T	T
			Ir < $=80$						T		T	T	T
			$\mathrm{lr}<=100$						T		T	T	T
			$\mathrm{lr}<=125$									T	T
			Ir $<=160$										T
$\begin{aligned} & \hline \text { NSX100F } \\ & \text { NSX160F } \\ & \text { TMD/TMG/ } \\ & \text { Micrologic } \end{aligned}$	36	35	Ir < $=32$	T	T	T	T	T	T	T	T	T	T
			Ir $<=40$		T	T	T	T	T	T	T	T	T
			Ir $<=50$			T	T	T	T	T	T	T	T
			Ir < <63				T	T	T	T	T	T	T
			Ir $<=80$						T		T	T	T
			Ir $<=100$						T		T	T	T
			Ir $<=125$									T	T
			\|r $<=160$										T
NSX250F TMD/TMG/ Micrologic	36	35	Ir < $=32$	25/52	25/52	25/52	25/52	25/52	25/52	T	T	T	T
			Ir < <40		25/52	25/52	25/52	25/52	25/52	T	T	T	T
			Ir < $=50$			25/52	25/52	25/52	25/52	T	T	T	T
			Ir $<=63$				25/52	25/52	25/52	T	T	T	T
			Ir < $=80$					25/52	25/52		T	T	T
			$\mathrm{Ir}<=100$						25/52		T	T	T
			Ir $<=125$									T	T
			Ir $<=160$										T
NSX100N/H NSX160N/H TMD/TMG/ Micrologic	$\begin{aligned} & 50 / \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 50 / \\ & 65 \end{aligned}$	Ir < <32	36/75	36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=40$		36/75	36/75	36/75	36/75	36/75	T	T	T	T
			Ir < <50			36/75	36/75	36/75	36/75	T	T	T	T
			Ir $<=63$				36/75	36/75	36/75	T	T	T	T
			Ir $<=80$					36/75	36/75		T	T	T
			Ir $<=100$						36/75		T	T	T
			$\mathrm{lr}<=125$									T	T
			Ir $<=160$										T
$\overline{\mathrm{NSX250N} / \mathrm{H}}$ TMD/TMG/ Micrologic	$\begin{aligned} & 50 / \\ & 70 \end{aligned}$	$\begin{aligned} & \hline 50 / \\ & 65 \end{aligned}$	Ir < $=32$	25/52	25/52	25/52				T	T	T	T
			$\mathrm{lr}<=40$		25/52	25/52	25/52	25/52	25/52	T	T	T	T
			Ir $<=50$			25/52	25/52	25/52	25/52	T	T	T	T
			Ir $<=63$				25/52	25/52	25/52	T	T	T	T
			Ir $<=80$					25/52	25/52		T	T	T
			Ir $<=100$						25/52		T	T	T
			Ir $<=125$									T	T
			Ir $<=160$										T

Circuit-breaker/Transfer Switching Equipment coordination Upstream: ComPacT NSX100-250
 Downstream: TransferPacT Automatic TA10D, TA16D

Ue: ≤ 440 V AC

Load side	TSE			TA10D						TA16D			
	Rating (A)			32	40	50	63	80	100	80	100	125	160
Supply side Circuit breaker	Ith (A) $60^{\circ} \mathrm{C}$			32	40	50	63	80	100	80	100	125	160
	1 lm (kA)			3	3	3	3	3	3	5.5	5.5	5.5	5.5
	Icu (kA) \quad Icm(kAp)			15		15		15	15	20	20	20	20
	415V	440 V	Ir	TSE conditionnal			36/75	36/75	36/75	65/143		65/143	65/143
NSX100S/L/R NSX160S/L/R TMD/TMG/ Micrologic	$\begin{aligned} & 100 / \\ & 150 / \\ & 200 \end{aligned}$	$\begin{gathered} 90 / \\ 150 / \\ 200 \end{gathered}$	Ir < $=32$	36/75	36/75	36/75					65/143		
			Ir < <40		36/75	36/75	36/75	36/75	36/75	65/143	65/143	65/143	65/143
			$\mathrm{lr}<=50$			36/75	36/75	36/75	36/75	65/143	65/143	65/143	65/143
			Ir $<=63$				36/75	36/75	36/75	65/143	65/143	65/143	65/143
			Ir < $=80$					36/75	36/75	65/143	65/143	65/143	65/143
			Ir $<=100$						36/75		65/143	65/143	65/143
			Ir $<=125$									65/143	65/143
			Ir $<=160$										65/143
NSX250S/L/R	$\begin{aligned} & 100 / \\ & 150 / \\ & 200 \end{aligned}$	$\begin{gathered} \hline 90 / \\ 150 / \\ 200 \end{gathered}$	Ir < $=32$	25/52	25/52	25/52	25/52	25/52	25/52	65/143	65/143	65/143	65/143
			Ir $<=40$		25/52	25/52	25/52	25/52	25/52	65/143	65/143	65/143	65/143
TMD/TMG/ Micrologic			lr < $=50$			25/52	25/52	25/52	25/52	65/143	65/143	65/143	65/143
			Ir < $=63$				25/52	25/52	25/52	65/143	65/143	65/143	65/143
			Ir $<=80$					25/52	25/52	65/143	65/143	65/143	65/143
			Ir $<=100$						25/52		65/143	65/143	65/143
			Ir $<=125$									65/143	65/143
			Ir $<=160$										65/143

T : Protection of the Transfer Switching Equipment is ensured but combination not very relevant
T \quad Transfer Switching Equipment is totally coordinated up to the Icu of the circuit breaker installed on supply side
$36 / 75$: Transfer Switching Equipment is protected up to 36 kA rms / 75 kA peak

[^6]
Fuses/Transfer Switching Equipment coordination

Upstream: gG Fuse

Downstream: TransferPacT Automatic TA10D, TA16D
Ue: ≤ 440 V AC

Load side	TSE	TA10D						TA16D			
	Rating (A)	32	40	50	63	80	100	80	100	125	160
	1th (A) $60^{\circ} \mathrm{C}$	32	40	50	63	80	100	80	100	125	160
Supply side		3	3	3	3	3	3	5.5	5.5	5.5	5.5
Fuse type	Rating (A)	15	15	15	15	15	15	20	20	20	20
gG fuse link	25	T	T	T	T	T	T	T	T	T	T
without overload	32		T	T	T	T	T	T	T	T	T
relay	40			T	T	T	T	T	T	T	T
	50				T	T	T	T	T	T	T
	63						T		T	T	T
	80						T		T	T	T
	100									T	T
	125										T
	160										
gG fuse link	<= 50	T	T	T	T	T	T	T	T	T	T
with overload relay	63	T	T	T	T	T	T	T	T	T	T
	80		T	T	T	T	T	T	T	T	T
	100			T	T	T	T	T	T	T	T
	125			80/176	80/176	80/176	80/176	T	T	T	T
	160				36/75	36/75	36/75	50/105	50/105	50/105	50/105
	200								36/75	36/75	36/75

T : Protection of the Transfer Switching Equipment is ensured but combination not very relevant
T : Transfer Switching Equipment is totally coordinated up to the Icu of the circuit breaker installed on supply side
$36 / 75$
: Transfer Switching Equipment is protected up to 36 kA rms / 75 kA peak
\square : Protection of the Transfer Switching Equipment is not ensured.

Important Notice: Current limitation caracteristics can be signifiantly different from one manufacturer to another This table can not dispense to check selected fuse caractersistics

TransferPacT FXM

Contents

Switching devices B-2
TransferPacT FXM100 to 630 B-4
MTSE/Manual source-changeover systems B-8
References of TransferPacT FXM B-9
Order form for manual source-changeover systems B-10

Switching devices

Complete Source-changeover Assembly
(or MTSE: Manual Transfer Switching Equipment)

Definition of Class PC

Transfer switch equipment based on mechanical switching devices, that do not need electrical power to hold the main contacts open or closed and capable of making, carrying, and breaking currents under normal circuit conditions including operating overload conditions, and making and withstanding short-circuit currents.

Definition of Derived TSE

TSE based on switching devices that have certain tests required for compliance with IEC 60947-6-1 as defined in Table 9, covered by IEC 60947-3 for Class PC, IEC 60947-2 or IEC 60947-6-2 for Class CB, or IEC 60947-4-1 for Class CC

Definition of MTSE (Manual Transfer Switching Equipment)

manually operated transfer switching equipment, transfer switching equipment operated manually and non-electrically.

TransferPacT FXM is a class PC, derived MTSE (complete source-changeover assembly)
These assemblies provide an easy way to implement source changeover functions with:

- A single 3-position rotary handle that controls the two switch-disconnectors (Normal source ON, OFF,

Replacement source ON)

- A smaller size, taking up less room in the switchboard.

A complete source changeover assembly can be ordered with a single catalog number.

Switching devices

Complete source changeover assembly

	TransferPacT FXM100 to 250			TransferPacT FXM320 to 630		
	Normal ON	OFF	Replacement ON	Normal ON	OFF	Replacement ON
Locking by padlocks	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Locking by keylock	-	O	-	-	-	-
Door locking ${ }^{[1]}$	\bigcirc	-	-	-	-	O
Door lock defeat ${ }^{[1]}$	O- ${ }^{[2]}$	-	(12]	(-12]	-	$)^{[2]}$
Door locking device padlocked ${ }^{[1]}$	-	\bigcirc	-	-	\bigcirc	-
Lead-sealable handle	\bigcirc	O	\bigcirc	\bigcirc	O	\bigcirc

[^7]
TransferPacT FXM100 to 630

(complete source-changeover assembly)

Complete source-changeover assembly.

Coupling accessory.

FXM			
Number of poles			
Electrical characteristics as defined by IEC 60947-1 / 60947-6-1 and EN 60947-1 / 60947-6-1			
Conventional thermal current (A)	Ith	at $60^{\circ} \mathrm{C}$	
Conventional thermal current in enclosure It	Ithe	at $60^{\circ} \mathrm{C}$	
Rated insulation level (V)	Ui	AC $50 / 60 \mathrm{~Hz}$	
Impulse-withstand voltage (kV)	Uimp		
Rated operational voltage (V)	Ue	$\text { AC } 50 / 60 \mathrm{~Hz}$	
		DC	
Rated operational voltage AC20 and DC20 (V)		AC $50 / 60 \mathrm{~Hz}$	
Rated operational current (A)	le	Electrical AC	$50 / 60 \mathrm{~Hz}$
			220-240 V
			$380-415 \mathrm{~V}$
			$440-480 \mathrm{~V}$
			$500-525 \mathrm{~V}$
			660-690 V
		Electrical DC	
			125 V (2 P in series)
			250 V (4P in series)
Rated duties		Uninterrupted duty	
		Intermittent duty	
Short-circuit making capacity (kA peak)	Icm	Min. (switch-disconnector alone)	
		Max. (with upstream protection circuit breaker)	
Short-time withstand current (A rms)	Icw	1 s	
		3 s	
		20 s	
		30 s	
Suitability for isolation			
Durability (category A) (O-C-O cycles)		Mechanical	
		Electrical AC	$50 / 60 \mathrm{~Hz}$
			440 V
			500 V
			690 V
		Electrical DC	
			250 V
Positive contact indication			
Visible break			
Emergency-off switch-disconnector			
Degree of pollution			
Upstream protection			
See the "Complementary technical information".			

TransferPacT FXM100 to 630

(complete source-changeover assembly)

TransferPacT FXM100 to 630 (complete source-changeover assembly)

FXM

Installation

Fixed, front connection
Fixed, rear connection
On symmetrical rails
On a backplate

Connection

By cables
By cables with lugs

Flat-facing bars

Edgewise bars

To bare cable connectors
Directly to terminals
To spreaders
To vertical-connection adapters via cable-lug adapters
Directly to terminals
To spreaders

Indication and measurement auxiliaries

Auxiliary contacts
Voltage-presence indicator
Current-transformer module
Ammeter module

Control, locking and interlocking

Direct front rotary handle
Extended front rotary handle
Direct lateral rotary handle
Extended lateral rotary handle
By keylock
Mechanical
Complete source-changeover
assembly
Operating torque (Nm) (typical value for 3-4 poles with front handle)
Installation and connection accessories
Bare cable connectors
Rear connectors
Terminal extensions
Spreaders
One-piece spreader
Terminal shrouds
Terminal shields
Interphase-barrier
Front panel escutcheons
Coupling accessories(downstream, outgoing pitch for FXM100-250 is 35 mm , FXM $320-630$ is 45 mm)
Tightening torque for electrical connections (Nm)

Dimensions and weights

Overall dimensions $\mathrm{H} \times \mathrm{W} \times \mathrm{D}(\mathrm{mm})$	3 poles
	4 poles
Approximate weight (kg)	3 poles
	4 poles

TransferPacT FXM100 to 630

(complete source-changeover assembly)

FXM100	FXM160	FXM200	FXM250	FXM320	FXM400	FXM500	FXM630
\bigcirc							
\bigcirc							
-	-	-	-	-	-	-	-
0	\bigcirc						
\bigcirc							
O	\bigcirc						
\bigcirc							
-	-	-	-	-	-	-	-
\bigcirc							
\bigcirc							
-	-	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc
0	\bigcirc						
\bigcirc							
\bigcirc							
\bigcirc							
10	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc
\bigcirc							
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
\bigcirc							
\bigcirc							
\bigcirc							
$5<\mathrm{Nm}<6.2$	$5<\mathrm{Nm}<6.2$	$5<\mathrm{Nm}<6.2$	$5<\mathrm{Nm}<6.2$	$13.5<\mathrm{Nm}<16.5$	$13.5<\mathrm{Nm}<16.5$	$13.5<\mathrm{Nm}<16.5$	$13.5<\mathrm{Nm}<16.5$
O	\bigcirc						
\bigcirc							
\bigcirc							
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
\bigcirc							
\bigcirc							
-	-	-	-	-	-	-	-
\bigcirc							
15	15	15	15	50	50	50	50
$136 \times 295 \times 131$	$205 \times 395 \times 155$						
$136 \times 295 \times 131$	$205 \times 395 \times 155$						
6.4	6.4	6.4	6.4	13.5	13.5	13.5	13.5
6.4	6.4	6.4	6.4	13.5	13.5	13.5	13.5

MTSE/Manual source-changeover systems
 TransferPacT FXM

Complete manual source-changeover assembly TransferPacT FXM with direct rotary handle

Front-panel cutout

Dimensions (mm)

	A	B	C	D	E	F	G	H	I	J	K	L
Type	60.4	130.4	296	68	136	131	61.8	279.3	42	84	156	186.5
M	5.5	50										
FXM $\mathbf{1 0 0}$ to 250 A to 630 A	82.5	175	395	102.5	205	155	87	383.7	64	128	210	213

TransferPacT FXM with extended handle

Dimensions (mm) Type	P	Mmax	Mmin	\mathbf{Q}
FXM 100 to 250 A	100	567.5	195	64
FXM 320 to 630 A	150	593	220.5	64

[^8]
References of TransferPacT FXM

TransferPacT FXM (complete source-changeover assembly)

Rotary handle

Extended front control for complete source changeover assembly

Order form for manual source-changeover systems

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles

Complete source-changeover assembly	INS250-160 A		
INS250-100 A		INS250-250 A	
INS250-200 A		INS400	
INS320		INS630	
INS500			

ATS, RTS and MTS based on ComPacTand MasterPacT rangeContents
Manual, Remote and Automatic Transfer Switch C-2
Switching devices C-4
TransferPacT C-10
TransferPacT controllers C-18
Manual source-changeover systems C-28
Source-changeover systems. C-37
Standard configurations C-45
Remote-operated source-changeover systems C-47
Source-changeover systems with UA controllers C-59
Source-changeover systems with BA controllers C-61
Remote-operated source-changeover systems C-62
References of source-changeover systems for 2 devices C-71
Order form for source-changeover systems for 2 devices C-77

Manual, Remote and Automatic Transfer Switch

Schneider Electric offers source change-over systems based on ComPacT and MasterPacT devices.
They are made of up to 3 circuit breakers or switch-disconnetors linked by an electrical interlocking system that may have different configurations. Moreover, a mechanical interlocking system must be added to protect against electrical malfunctions or incorrect manual operations. In addition, a controller can be used for automatically control the source transfer.
The following pages present the different solutions for mechanical and electrical interlocking and associated controllers.

Manual source-changeover system
(or MTSE: Manual Transfer Switching Equipment)

Remote-operated source-changeover system

(or RTSE: Remote Transfer Switching Equipment)

Automatic source-changeover system

(or ATSE: Automatic Transfer Switching Equipment)

Manual, Remote and Automatic Transfer Switch

Switching devices

	Class PC	Class CB
ComPact INS/INV	C-4	-
ComPacT NSX	C-5	C-8
ComPacT NS	C-5	C-9
MasterPacT MTZ1	C-5	C-9
MasterPacT MTZ2/MTZ3	C-5	C-9

Mechanical interlocking

Mechanical interlocks	C-10
Keylocks with captive keys	C-12
Cables or connecting rods	C-15

TransferPacT

Electrical interlocking

Electrical interlocking	
IVE unit + base plate	C-16
IVE unit, Operating sequences	C-17

TransferPacT controller
With automatic controller

Controller selection	$\mathrm{C}-18$
Controller installation	$\mathrm{C}-19$
BA controller	$\mathrm{C}-20$
BA controller, Operating sequences	$\mathrm{C}-21$
UA controller	$\mathrm{C}-22$
UA controller, Operating sequences,	$\mathrm{C}-23$
Forced operation mode	$\mathrm{C}-24$
UA controller, Operating sequences, Special-tariff mode	C (25
UA controller, Operating sequences, Test mode and automatic operation	C (26
UA/BA controller, Operating sequences	

Information

IEC 60947-6-1 applies to transfer switching equipment (TSE) to be used in power systems for transferring a load supply between a normal and an alternate source (other power supply or generator).

TSE is classified according to
\square The method of controlling the transfer
\square Manually transfer switching equipment (MTSE)
\square Automatic transfer switching equipment (ATSE)

- their short circuit capability
\square Class PC: TSE that is capable of making and withstanding, but not intended for breaking short-circuit currents.
Switch and switch-disconnectors are the most useful products used.
\square Class CB: TSE that is capable of making, withstanding, it's intended for breaking short-circuit currents and is provided with over-current releases. Circuit breakers (air circuit breaker or moulded-case circuit breaker) are the most useful products used.

Switching devices
 Class PC

Range	ComPacT INS	ComPacT INS/INV
Types of devices	INS40 to INS80 INS100 to INS160	INS250 to INS630 INV100 to INV630
Mixing possibilities	All devices, not possible with a complete assembly source-changeover	All devices, not possible with a complete assembly source-changeover
Electrical characteristics		
Current rating	40 to 160 A	100 to 630 A
Insulating voltage Ui (V AC)	750	800
Rated operational voltage		
Positive break indication	\square	\square
Number of poles (N and R devices must have the same number of poles)	3, 4	3, 4
Operating temperature	$-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
Additional indication and control auxiliaries		
Indication contacts	OF	OF
Voltage releases MX shunt		
MN undervoltage		
Voltage presence indicator	■	\square
Voltage transformer		
Ammeter module	■	■
Insulation monitoring module		
Installation and connection		
Fixed front connected	\square	\square
Fixed rear connected	\square	\square
Withdrawable, plug-in or drawout		
Installation and connection accessories		
Downstream coupling accessory		\square
Bare-cable connectors	\square	\square
Terminal extensions	\square	\square
Terminal shields and inter-phase barriers	\square	\square
Front panel escutcheons		\square
Locking by padlock	\square	\square
by keylock	\square	\square

Switching devices
 Class PC

Range	ComPacT NSX		ComPacT NS	MasterPacT	
Types of devices	NSX100 to NSX250	NSX400 to NSX630	NS630b to NS1600	MTZ1 06 to 16	MTZ2 08 to 40 MTZ3 40 to 63
Mixing possibilities	all devices	all devices	all devices	all mixing possibilities	all mixing possibilities
	$\begin{aligned} & \text { NSX100NA to } \\ & \text { NSX250NA } \end{aligned}$	NSX100NA to NSX630NA	NS630bNA to NSX1600NA	(fixed, drawout or fixed + drawout) HA	(fixed, drawout or fixed + drawout) NA/HA/HA10
	fixed/fixed or plug-in/plug-in	fixed/fixed or plug-in/plug-in	fixed/fixed or plug-in/plug-in		
Electrical characteristics					
Current rating	15 to 250 A	15 to 630 A	250 to 1600 A	600 to 1600 A	800 to 6300 A
Insulating voltage Ui (V AC)	750	750	750	1000	1000
Rated operational voltage					
Positive break indication	\square	\square		\square	\square
Number of poles (N and R devices must have the same number of poles)	3, 4	3, 4	3, 4	3, 4	3, 4
Operating temperature	$\begin{array}{r} -25^{\circ} \mathrm{C} \text { to } \\ \left(50^{\circ} \mathrm{C} \text { for } 44\right. \end{array}$	$\begin{aligned} & 0+70^{\circ} \mathrm{C} \\ & 40 \mathrm{~V}-60 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \left(50^{\circ} \mathrm{C} \text { for } 440 \mathrm{~V}-\right. \\ 60 \mathrm{~Hz}) \end{gathered}$	$-25^{\circ} \mathrm{C}$	$+70^{\circ} \mathrm{C}$
Control characteristics					
Control voltage AC	$\begin{array}{\|c\|} \hline 48 \mathrm{~V}-50 \mathrm{~Hz} \\ 110 / 130,220 / 240, \\ 380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{array}$	$\begin{gathered} 48 \mathrm{~V}-50 \mathrm{~Hz} \\ 110 / 130,220 / 240, \\ 380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{gathered}$		$\begin{gathered} 48 \text { to } 415 \mathrm{~V}- \\ 50 / 60 \mathrm{~Hz} \\ 440 \mathrm{~V}-60 \mathrm{~Hz} \end{gathered}$	
DC	24-250 V				
Maximum consumption AC	500 VA	500 VA	180 VA	180 VA	180 VA
DC	500 W	500 W	180 W	180 W	180 W
Minimum switching time	800 ms				
Protection and measurement					
Earth-leakageprotection	■	■			
			■	\square	\square
	■	■	■	■	\square
Current measurements			-	\square	\square
Voltage, frequency, power measurements, etc.				■	■
Additional indication and control auxiliaries					
Indication contacts	OF + SDE (+ SDV)	3 OF + SDE (+ SDV)	2 OF + SDE	2 OF + SDE	2 OF + SDE
Voltage releases MX shunt	\square	\square	\square	\square	\square
MN undervoltage	\square	\square	■	\square	\square
Voltage presence indicator	■	■			
Voltage transformer	\square	\square			
Ammeter module	\square	\square			
Insulation monitoring module	\square	\square			
Installation and connection					
Fixed front connected				\square	\square
Fixed rear connected	(long rear connections)	(long rear connections)	$\begin{aligned} & \text { (vertical or } \\ & \text { horizontal) } \end{aligned}$	(vertical or horizontal)	(vertical or horizontal)
Withdrawable, plug-in or drawout	- (plug-in on base)	- (plug-in on base)	- (drawout)	- (drawout)	- (drawout)
Installation and connection accessories					
Downstream coupling accessory	\square	■			
Bare-cable connectors	■	■	\square		
Terminal extensions	\square	\square			
Terminal shields and inter-phase barriers		\square	-		
Front panel escutcheons	■	\square	\square	\square	\square
Locking $\begin{array}{ll}\text { by padlock } \\ \text { by keylock }\end{array}$	\square	\square	\square	-	\square
	\square	\square	\square	\square	\square

Switching devices

ComPacT NSX and ComPacT NS class PC and CB	NSX100 to 250		NSX400 to NSX630		NS630b to NS1600	
Number of poles	3, 4		3, 4		3, 4	
Rated current In (A)	100 to 250		400 to 630		630 to 1600	
Mechanical durability ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)	20000-40000-50000		15000		8000	
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}\right.$ cycles $)$ for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{(2)}$	10000-20000-30000		4000-6000		2000	
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{R}-\mathrm{O}_{R}-\mathrm{C}_{\mathrm{N}}\right.$ cycles $)$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}{ }^{(2)}$	5000-7500-10000		2000-3000		1500	
MasterPacT class PC and CB	$\begin{gathered} \text { MTZ1 } \\ 06 \text { to } 10 \end{gathered}$	$\begin{gathered} \text { MTZ1 } \\ 12 \text { to } 16 \end{gathered}$	$\begin{gathered} \text { MTZ2 } \\ 08 \text { to } 16 \end{gathered}$	$\begin{gathered} \text { MTZ2 } \\ 20 \end{gathered}$	$\begin{gathered} \text { MTZ2 } \\ 25 \text { to } 40 \end{gathered}$	$\begin{gathered} \text { MTZ3 } \\ 40 \text { to } 63 \end{gathered}$
Number of poles	3, 4	3, 4	3, 4	3, 4	3, 4	3, 4
Rated current In (A)	630 to 1600	1250 to 1600	800 to 1600	2000	2500 to 4000	4000 to 6300
Mechanical durability ${ }^{[1]}$ ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)	8000	8000	10000	10000	10000	5000
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{[1]}$ for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{[2]}$	6000	$\begin{gathered} 6000 \\ \text { MTZ1 16: } 3000 \end{gathered}$	10000	8000	5000	1500
Electrical durability at $\ln \left(\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{[1]}$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}{ }^{[2]}$	3000	$\begin{gathered} \text { 2000 } \\ \text { MTZ1 16: } 1000 \end{gathered}$	10000	6000	2500	1500

[^9]
Switching devices

Class CB

Range

Types of devices
Mixing possibilities

ComPacT NSX
NSX100 to NSX250
all devices
NSX100 to NSX250
N/H/L
fixed/fixed or plug-in/plug-in

Current rating	15 to 250 A	15 to 630 A
Insulating voltage Ui (V AC)	750	750
Rated operational voltage		
Positive break indication	\square	\square
Number of poles (N and R devices must have the same number of poles)	3, 4	3, 4
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{C}\right.$ for $\left.440 \mathrm{~V}-60 \mathrm{~Hz}\right)$	
Motor mechanism		
Control voltage AC	$\begin{aligned} & 48 \mathrm{~V}-50 \mathrm{~Hz} \\ & 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 48 \mathrm{~V}-50 \mathrm{~Hz} \\ & 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{aligned}$
DC	$24-250 \mathrm{~V}$	$24-250 \mathrm{~V}$
Maximum consumption AC	500 VA	500 VA
DC	500 W	500 W
Minimum switching time	800 ms	800 ms

Operating temperature
Motor mechanism

Current rating	15 to 250 A	15 to 630 A
Insulating voltage Ui (V AC)	750	750
Rated operational voltage		
Positive break indication	\square	\square
Number of poles (N and R devices must have the same number of poles)	3, 4	3, 4
Operating temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{C}\right.$ for $\left.440 \mathrm{~V}-60 \mathrm{~Hz}\right)$	
Motor mechanism		
Control voltage AC	$\begin{array}{\|l\|} \hline 48 \mathrm{~V}-50 \mathrm{~Hz} \\ 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{array}$	$\begin{array}{\|l} 48 \mathrm{~V}-50 \mathrm{~Hz} \\ 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{array}$
DC	$24-250 \mathrm{~V}$	24-250 V
Maximum consumption AC	500 VA	500 VA
DC	500 W	500 W
Minimum switching time	800 ms	800 ms

Protection and measurement		
Earth-leakage protection	by Vigi module	\square
	by control unit	
	by add-on VigiPact relay	■
Current measurements		
Voltage, frequency, power measurements, etc.		

Voltage, frequency, power measurements, etc.

Additional indication and control auxiliaries			
Indication contacts		OF + SDE (+ SDV)	3 OF + SDE (+ SDV)
Voltage releases	MX shunt	\square	\square
	MN undervoltage	■	■
Voltage presence indicator		\square	\square
Voltage transformer		■	\square
Ammeter module		\square	\square
Insulation monitoring module		\square	\square

Installation and connection

Fixed front connected		
Fixed rear connected	(long rear connections)	\square (long rear connections)
Withdrawable, plug-in or drawout	(plug-in on base)	(plug-in on base)

Installation and connection accessories

| Downstream coupling accessory | \square | \square | |
| :--- | :--- | :--- | :--- | :--- |
| Bare-cable connectors | \square | | |
| Terminal extensions | \square | \square | |
| Terminal shields and inter-phase barriers | | | |
| Front panel escutcheons | by padlock | \square | \square |
| Locking | by keylock | \square | \square |
| | | \square | \square |

ComPacT NSX

Rated current In (A)

Mechanical durability $\left(O_{N}-C_{R}-O_{R}-C_{N}\right.$ cycles) ${ }^{[1]}$
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{R}-\mathrm{O}_{R}-\mathrm{C}_{N}\right.$ cycles) ${ }^{[1]}$
for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{[2]}$
Electrical durability at $\operatorname{In}\left(O_{N}-C_{R}-O_{R}-C_{N} \text { cycles }\right)^{[1]}$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}{ }^{[2]}$

NSX100-250

100 to 250

20000-40000-50000
10000-20000-30000

5000-7500-10000

NSX400 to NSX630 all devices NSX100 to NSX630
N/H/L
fixed/fixed or plug-in/plug-in

$|$| \square |
| :--- |
| \square |
| \square |

Additional indication and control auxiliaries

- (long rear connections)
- (plug-in on base)

[^10][2] Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.
Note:
ON : opening of N source
CR: closing of R source
OR: opening of R source
CN : closing of N source

Switching devices

Class CB

| ComPacT NS |
| :--- | :--- |
| NS630b to NS1600 |
| all devices |
| NS630b to 1600 |
| N/H/L |
| fixed/fixed or plug-in/plug-in |

\mid MasterPacT MTZ1
MTZ1 06 to 16
all mixing possibilities
(fixed, drawout or fixed + drawout)
H1/H2/H3/L1

MasterPacT MTZ2/MTZ3
MTZ2 08 to 40 and MTZ3 40 to 63 all mixing possibilities
(fixed, drawout or fixed + drawout) N1/H1/H2/H3/L1/H10 for MTZ2 H1/H2 for MTZ3

250 to 1600 A	600 to 1600 A	800 to 6300 A
750	1000	1000
3,4	3,4	3,4
	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	

	48 to $415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	48 to $415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$
$24-250 \mathrm{~V}$	$440 \mathrm{~V}-60 \mathrm{~Hz}$	$440 \mathrm{~V}-60 \mathrm{~Hz}$
180 VA	$24-250 \mathrm{~V}$	$24-250 \mathrm{~V}$
180 W	180 VA	180 VA
800 ms	180 W	180 W

| | | |
| :--- | :--- | :--- | :--- |
| \square | \square | \square |
| \square | \square | \square |
| \square | \square | \square |
| | \square | \square |

| 2 OF + SDE | 2 OF + SDE | 2 OF + SDE |
| :--- | :--- | :--- | :--- |
| \square | \square | \square |
| \square | \square | \square |
| | | |

	\square	
\square (vertical or horizontal)	\square (vertical or horizontal)	(vertical or horizontal) \square (drawout)

\square						
\square						
\square	\square		\square			
\square	\square		\square			
\square	\square		\square			
ComPacT NS	MasterPacT MTZ1/MTZ2/MTZ3					
NS630b to NS1600	MTZ1 06 to 10	MTZ1 12 to 16	$\begin{aligned} & \text { MTZ2 } \\ & 08 \text { to } 16 \end{aligned}$	MTZ2 20	$\begin{aligned} & \text { MTZ2 } \\ & 25 \text { to } 40 \end{aligned}$	$\begin{aligned} & \text { MTZ3 } \\ & 40 \text { to } 63 \end{aligned}$
630 to 1600	630 to 1600	1250 to 1600	800 to 1600	2000	2500 to 4000	4000 to 6300
8000	8000	8000	10000	10000	10000	5000
2000	6000	6000	10000	8000	5000	1500
1500	3000	3000	10000	6000	2500	1500

TransferPacT

Mechanical interlocking

Range	ComPact		ComPacT
Models	INS40 to INS80 INS100 to INS160	INS250 to INS630 INV250 to INV630	NSX100 to NSX250
Current rating (A)	40 to 160	100 to 630	100 to 630
Type of device	Class PC	Class PC	Class PC and Class CB
Interlocking by toggles			
M			
Interlocking by rotary handles			
M			
Interlocking by keylocks with captive keys			
Interlocking by a base plate			
A			

TransferPacT

Mechanical interlocking

[1] Implemented with NS630b to NS1600 electrically-operated devices only.
[2] For source-changeover systems using cables, always respect the installation conditions specified on.
[3] Not compatible with automatic controller.
Note: for other cases, please consult us.

TransferPacT

Interlocking of two or three toggle-controlled devices.

Interlocking of two devices by rotary handles.

Interlocking with keylocks.

Interlocking of two or three toggle-controlled devices

Interlocking system

Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side.
Authorized positions:

- one device closed (ON), the others open (OFF)
- all devices open (OFF).

The system is locked using one or two padlocks ($\varnothing 5$ to 8 mm).
This system can be expanded to more than three devices.
There are two interlocking-system models:

- one for ComPacT INS/INV
- one for ComPacT NSX100 to NSX250
- one for ComPacT NSX400 to NSX630.

Combinations of Normal and Replacement devices

All toggle-controlled fixed or plug-in ComPacT NSX100 to NSX630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of two devices by rotary handles

Interlocking system

Interlocking involves padlocking the rotary handles on two devices which may be either circuit breakers or switch-disconnectors.
Authorized positions:
\square one device closed (ON), the other open (OFF)
■ both devices open (OFF).
The system is locked using up to three padlocks ($\varnothing 5$ to 8 mm).
There are two interlocking-system models:
■ one for ComPacT INS/INV

- one for ComPacT NSX100 to NSX250
- one for ComPacT NSX400 to NSX630.

Combinations of Normal and Replacement devices

All rotary-handle fixed or plug-in ComPacT NSX100 to NSX630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of devices by keylocks (captive keys)

Interlocking using keylocks is very simple and makes it possible to interlock two or more devices that are physically distant or that have very different characteristics, for example medium-voltage and low-voltage devices or a ComPacT NSX100 to NSX630 switch-disconnector and circuit breaker.

Interlocking system

Each device is equipped with an identical keylock and the key is captive on the closed (ON) device. A single key is available for all devices. It is necessary to first open (OFF position) the device with the key before the key can be withdrawwn and used to close another device.
A system of wall-mounted captive key boxes makes a large number of combinations possible between many devices.

Combinations of Normal and Replacement devices

All rotary-handle ComPacT NSX100 to NSX630 circuit breakers and switch-disconnectors can be interlocked between each other or with any other device equipped with the same type of keylock.

TransferPacT

Mechanical interlocking

Interlocking of two devices by base plate

Interlocking system

A base plate designed for two ComPacT NSX devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. In this way, access to the device controls and trip units is not blocked.

Combinations of Normal and Replacement devices

All rotary-handle and toggle-controlled ComPacT NSX100 to NSX630 circuit breakers and switch-disconnectors can be interlocked. Devices must be either all fixed or all plug-in versions, with or without earth-leakage protection or measurement modules.
An adaptation kit is required to interlock:

- two plug-in devices
- a ComPacT NSX100 to NSX250 with an NSX400 to NSX630.

Connection to the downstream installation can be made easier using a coupling accessory.

Downstream coupling accessory

This accessory simplifies connection to bars and cables with lugs.
It may be used to couple two switch-disconnectors and circuit breakers of the same size, ComPacT INS/INV100 to 630 and ComPacT NSX100 to 630.
Pitch between outgoing terminals:

- ComPacT INS250 and INV100 to 250: 35 mm

■ ComPacT INS/INV320 to INS/INV630: 45 mm

- ComPacT NSX100 to NSX250: 35 mm
- ComPacT NSX400 to NSX630: 45 mm .

For ComPacT NSX circuit breakers, the downstream coupling accessory can be used only with fixed versions.

Connection and insulation accessories

The coupling accessory can be fitted with the same connection and insulation accessories as the circuit breakers and switch-disconnectors.

Possible uses	Downstream coupling	
	Possible mounting	Outgoing pitch (mm)
Manual source-changeover systems		
INS250 (100 to 250 A) with rotary handle	■	35
NSX100 to NSX250 with rotary handle	-	35
NSX100 to NSX250 on base plate with toggle control	■	35
INS400 to INS630 (320 to 630 A) with rotary handle	-	45
NSX400 to NSX630 with rotary handle	■	45
NSX400 to NSX630 on base plate with toggle control	\square	45

Note: for usage of PowerTag NSX on NSX mounted on interlocking plate, please consult us.

Interlocking on a base plate.

A
B
C
D
Short terminal shields
Terminals
(C) Interphase barriers
(D) Long terminal shields

TransferPacT

Mechanical interlocking
For implementing the mechanical interlocking, two different possibilities are offered:
\square interlocking with rods

- interlocking with cables.

Note: for mechanical interlocking application with connecting rods and cables, pushbutton cover is mandatory to prevent wrong mechanical close order.
Commercial references for pushbutton cover:
■ MasterPacT MTZ1 : LV833897
■ MasterPacT MTZ2 and MTZ3 : LV848536

- ComPacT NS630b to 1600: 33897

Interlocking of two MasterPacT MTZ1, MTZ2/MTZ3 circuit breakers using connecting rods.

Interlocking with rods

Interlocking of two ComPacT NS630b to 1600 devices using connecting rods
Both devices must be installed one above the other.
For ComPacT NS, only associations between similar type devices are allowed (2 fixed or 2 drawout devices).

Installation

This function requires:
\square an adaptation fixture on the right side of each circuit breaker or switch-disconnector

- a set of connecting rods with no-slip adjustments.

The adaptation fixtures, connecting rods and circuit breakers or switch-disconnectors are supplied separately, ready for assembly.
The maximum vertical distance between the fixing plates is 900 mm .
Possible combinations of " $\mathbf{S 1}$ " and " S 2 " source circuit breakers
Combinations are possible between ComPacT NS devices and between ComPacT NS devices with MasterPacT MTZ1 devices (either 2 fixed or 2 withdrawable/drawout devices).
Interlocking of two MasterPacT MTZ using connecting rods
Both devices must be installed one above the other.
For MasterPacT MTZ1 only associations between similar type devices are allowed (2 fixed or 2 drawout devices). For MasterPacT MTZ2 and MTZ3, all mixed associations between fixed type and drawout type devices are possible.

Installation

This function requires:

- an adaptation fixture on the right side of each circuit breaker or switch-disconnector
\square a set of connecting rods with no-slip adjustments
- a mechanical operation counter CDM (mandatory).

The adaptation fixtures, connecting rods, circuit breakers and switch-disconnectors are supplied separately, ready for assembly.
The maximum vertical distance between the fixing plates is 900 mm .

TransferPacT Mechanical interlocking

Interlocking with cables
 Interlocking of two ComPacT NS630b to 1600 devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and have different ratings and sizes.

Installation

This function requires:

- an adaptation fixture on the right side of each device
- a set of cables with no-slip adjustments.

The maximum distance between the fixing plates (vertical or horizontal) is 2000 mm .

Possible combinations of "S1" and "S2" source circuit breakers

All mixed associations between ComPacT NS 630b to 1600 and MasterPacT MTZ1 or MTZ2 or MTZ3 fixed type and drawout type devices are possible.
Interlocking of two or three MasterPacT MTZ using cables
For cable interlocking, the circuit breakers can be installed either one above the other or side-by-side. All mixed associations between MasterPacT MTZ1, MTZ2, MTZ3 fixed type and drawout type devices are possible.
Note: mechanical interlocking for 3 devices is only possible with MTZ2 and MTZ3.
Interlocking between two MasterPacT MTZ1, MTZ2, MTZ3 devices
This function requires:

- an adaptation fixture on the right side of each device
- a set of cables without slip adjustments
- a mechanical operation counter CDM (mandatory).

The maximum distance between the fixing plates (vertical or horizontal) is 2000 mm .

Interlocking between three MasterPacT MTZ2, MTZ3 devices

This function requires:

- a specific adaptation fixture installed on the right side of each device
- two sets of cables without slip adjustments
- a mechanical operation counter CDM (mandatory).

The maximum distance between the fixing plates (vertical or horizontal) is 1000 mm .

Installation

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly.
Installation conditions for cable interlocking systems:

- cable length: 2.5 m
- cable bending radius: greater than 100 mm
- maximum number of curves: 3 .

Note: for cable length higher than 2.5 m please consult us before ordering the circuit breakers for a customized solution.

Choice criteria

In applications where the continuity of service is critical ${ }^{[1]}$ (data centers, airports, hospitals, marine, oil\&gas, process industry, etc.), mechanical interlocking by rods and drawout devices are strongly recommended.
Mechanical interlocking by rods is preferred as less energy is consumed by friction, so it has less effect on the circuit breaker closing energy.
In terms of breaker mounting type, the drawout version is preferred as :

- it provides mechanical isolation of the circuit breaker from possible external stress on the terminals by having a flexible connection at cluster level
- it allows simple and total access for periodic maintenance
- it allows quick replacement of the device if necessary.

When not possible, cable interlocking or fixed versions can be used, but the installation rules detailed in the 2 sections below must be strictly respected and mainly:

- the busbars or the cables used for power connection must apply no stress on the circuit breaker terminals.
Their weight must be supported by the switchboard frame.

Interlocking of two
MasterPacT circuit
breakers using cables.

[1] For more details please contact your local support. Note: for more details on installation rules, please also refer to "MasterPacT MTZ User Guide".

TransferPacT

Electrical interlocking - IVE unit

Electrical interlocking is used with a mechanical interlocking system. Morover, the relays controlling the closing order to the " N " and " R " circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

IVE unit.

Electrical interlocking is carried out by an electrical control device.
For ComPacT NSX up to 630 A, electrical interlocking is implemented by the IVE unit integrating control circuits and an external terminal block in accordance with the page C-38 of the chapter "Electric diagrams" of this catalog.
The integrated control circuits implement the time delays required for correct source transfer
For ComPacT NS630b to NS1600 and MasterPacT, this function can be implemented in one of two ways:

- Using the IVE unit

■ By an electrician based on the diagrams in accordance with the pages C-42 to C-47 of the chapter "Electric diagrams" of this catalog.
Characteristics of the IVE unit
■ External connection terminal block:
\square Inputs: circuit breaker control signals
\square Outputs: status of the SDE contacts on the " N " and " R " source circuit breakers.

- 2 connectors for the two " N " and " R " source circuit breakers:
\square Inputs:
- Status of the OF contacts on each circuit breaker (ON or OFF)
- Status of the SDE contacts on the " N " and "R" source circuit breakers
\square Outputs: power supply for operating mechanisms.
- Control voltage:
$\square 24$ to 250 V DC
$\square 48$ to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.
The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

IVE unit

Symbols
QN: "Normal" ComPacT circuit breaker equipped for remote operation (motor mechanism)
QR: "Replacement" ComPacT circuit breaker equipped for remote operation (motor mechanism)
ON: Circuit breaker QN opening order
OR: Circuit breaker QR opening order

Key

O: OFF (circuit open)
I: ON (circuit closed)
: either ON or OFF.
Note: following all trips (overload, short-circuit, earth-leakage fault, voluntary trip), a manual reset on the front of the motor mechanism is required

TransferPacT

Electrical interlocking - IVE unit

Necessary equipment

For ComPacT NSX100 to NSX630, each circuit breaker must be equipped with:

- A motor mechanism
- An OF contact
- An SDE contact

The components are supplied ready for assembly and the circuit breakers prewired. The prewiring must not be modified.
For ComPacT NS630b to NS1600, each circuit breaker must be equipped with:

- A motor mechanism
- An available OF contact
\square A CE connected-position contact (carriage switch) on withdrawable circuit breakers
- An SDE contact

For MasterPacT MTZ, each circuit breaker must be equipped with:

- A remote-operation system made up of:
\square MCH gear motor
$\square \mathrm{MX}$ or MN opening release
\square XF closing release
\square PF "ready to close" contact
- CDM mechanical operation counter (mandatory)
- An available OF contact
- One to three CE connected-position contacts (carriage switches) on drawout circuit breakers (depending on the installation).

A Circuit breaker QS1 equipped with a motor mechanism and auxiliary contacts, connected to the N source
(B) Circuit breaker QS2 equipped with a motor mechanism and auxiliary contacts, connected to the R source
C Base plate with mechanical interlocking
(D) Electrical interlocking unit IVE

E Coupling accessory (downstream connection)

ComPacT NSX

[^11]
TransferPacT controllers

Controller selection

By combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.
These controllers can be used on source-changeover systems comprising 2 circuit breakers.
For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalog.

BA controller.

UA controller.
[1] The controller is powered by the ACP control plate
The same voltage must be used for the ACP plate, the IVE unit and the circuit breaker operating mechanisms.
If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply.
If not, an isolation transformer must be used.

TransferPacT controllers

Controller installation

TransferPacT ACP control plate

The control plate provides in a single unit:

- protection for the BA or UA controller with two highly limiting P25M circuit breakers (infinite breaking capacity) for power drawn from the AC source
- control of circuit breaker ON and OFF functions via two relay contactors - connection of the circuit breakers to the BA or UA controller via a built-in terminal block.

Control voltages

- $110 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.
- 220 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.
- 380 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and 440 V 60 Hz .

The same voltage must be used for the TransferPacTACP control plate, the controller and the circuit breaker operating mechanisms.

Installation

Connection between the TransferPacT ACP control plate and the IVE unit may use: - wiring done by the installer

- prefabricated wiring (optional).

Installation of the BA and UA controllers
The BA and UA controllers may be installed in one of two manners:

- directly mounted on the TransferPacTACP control plate
- mounted on the front panel of the switchboard
- if the length of the connection between the controller and the control plate (ACP) is less than or equivalent to 1 m , the connecting cable ref. 29368 can be ordered as an optional extra. Cables longer than 1 m , but not longer than 2 m will be the responsibility of the installer.

TransferPacTACP control plate.

Mounting on the TransferPacTACP control plate.

[^12]
TransferPacT controllers
 BA controller

The BA controller is used to create simple source-changeover systems that switch from one source to another depending on the presence of voltage UN on the "Normal" source.
It is generally used to manage two permanent sources and can control ComPact NS, ComPact NSX and MasterPacT MTZ circuit breakers and switch-disconnectors.

Front of the BA controller.

Operating modes

A four-position switch may be used to select:

- automatic operation
- forced operation on the "Normal" source
- forced operation on the "Replacement" source
- stop (both "Normal" and "Replacement" sources off).

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).
Circuit breaker commands and status indications
The status of the circuit breakers is indicated on the front of the controller. - ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals: - inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)

- outputs:
\square indication of operation in automatic or stop mode via changeover contacts.
Test
It is possible to test the operation of the BA controller by turning OFF (opening) the P25M circuit breaker for the "Normal" source and thus simulating a failure of voltage UN.

TransferPacT controllers

BA controller

Operating sequences

Switch set to the "R" position (forced operation on the "Replacement" source) Switch set to the "Stop" position

TransferPacT controllers
 UA controller

The UA controller is used to create a source-changeover system integrating the following automatic functions:
■ transfer from one source to another depending on the presence of voltage UN on the "Normal" source
\square startup of an engine generator set
■ shedding and reconnection of non-priority circuits

- transfer to the "Replacement" source if one of the phases on the "Normal" source fails. The UA controller can control ComPact NS, ComPact NSX and MasterPacT MTZ devices.

Front of the UA controller.

Operating modes

A four-position switch may be used to select:

- automatic operation
- forced operation on the "Normal" source
- forced operation on the "Replacement" source
- stop (both "Normal" and "Replacement" sources off, then manual operation).

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).
t3. delay following opening of QN with load shedding and before closing of QR (adjustable from 0.5 to 30 seconds).
t4. delay following opening of QR with load reconnection and before closing of QN (adjustable from 0.5 to 30 seconds).
t5. delay for confirmation that UN is present before shutting down the engine generator set (adjustable from 60 to 600 seconds).
t6. delay before startup of the engine generator set (120 or 180 seconds).

Commands and indications

Circuit breaker status indications on the front of the controller: - ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals:

- inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)
- outputs:
\square control of an engine generator set (ON / OFF)
\square shedding of non-priority circuits
\square indication of operation in automatic mode via changeover contacts.
Distribution-system settings
Three switches are used to:
- select the type of "Normal" source, whether single-phase or three-phase
(e.g. 240 V single-phase or 240 V three-phase)
- select whether to remain (or not) on the "Normal" source if the "Replacement" source is not operational during operation on special tariffs
- select the maximum permissible startup time for the engine generator set during operation on special tariffs (120 or 180 seconds).

Test

A pushbutton on the front of the controller may be used to test transfer from the "Normal" source to the "Replacement" source, then the return to the "Normal" source. The test lasts approximately three minutes.

COM communications option

Using the internal bus protocol, this option may be used to remote the following information:

- circuit breaker status (ON, OFF, fault trip)
- presence of the "Normal" and "Replacement" voltages
- presence of an order for forced operation (e.g. special tariffs)
- settings and configuration information
- status of non-priority circuits (loads shed or not)
- position of the switch (stop, auto, forced operation on the "Normal" source, forced operation on the "Replacement" source).

TransferPacT controllers

UA controller

Operating sequences, forced operation mode

TransferPacT controllers

UA controller

Operating sequences, special-tariff mode

Switch set to the "Auto" position (special-tariff mode)

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energized, the output for generator set startup is activated.

Key

UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R: "Replacement" source circuit breaker
B: Penalties accepted ($\mathrm{N} O N$), i.e. $B=1$
(1) The number sends to the indicated step when the condition is true.

TransferPacT controllers

UA controller

Operating sequences, test mode and automatic operation
Switch set to the "Auto" position (automatic operation and test mode).

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energized, the output for generator set startup is activated).

Key

UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R: "Replacement" source circuit breaker
B: Penalties accepted ($\mathrm{N} O N$), i.e. $B=1$
[1] The test lasts 180 seconds.
(1) The number sends to the indicated step when the condition is true.

TransferPacT controllers

UA/BA controller

Inputs
UN: "Normal" source voltage
UR: "Replacement" source voltage
KT: order for forced-operation on R
KR: additional check before transfer

Outputs

QN: "Normal" source circuit breaker
QR: "Replacement" source circuit breaker

Inputs

UN: "Normal" source voltage
UR: "Replacement" source voltage
KT: order for forced-operation on R

Outputs

KG: order to the genset
SH: load-shedding order
QN: "Normal" source circuit breaker
QR: "Replacement" source circuit breaker

Key

O: OFF (circuit open)
I: ON (circuit closed
: either ON or OFF

Important

If UR is not ON when the transfer order is issued (KT or UN), the sequence is not carried out. If KR status is not ON when the transfer order is issued (KT or UN), the transfer sequence is carried out later when KR status becomes I.

Manual source-changeover systems

ComPacT INS/INV
Class PC
Interlocking of direct rotary handles
(ComPacT INS/INV250-100 to 250 A / ComPacT INS/INV320/400/500/630)

Dimensions

Front-panel cutout

Dimensions (mm)

Type	A	B	C	D	F	G	H	K	L	M	N	P
INS/INV250-100 to 250 A	325	90	87.5	175	156	106	17.5	295	75.5	150	75	131
INS/INV320/400/500/630	416	115	100	200	210	130	22.5	386	100	175	74.5	160.4

Note: X and Y are the symmetry planes for a 3-pole device.
Interlocking of extended rotary handles
(ComPacT INS40/63/80/100/125/160 / ComPacT INS/INV250-100 to 250 A / ComPacT INS/ INV320/400/500/630)

Dimensions

Front-panel cutout

Dimensions (mm)	A	B	C	D	F	G min	G max	H	P	Q
Type	325	90	87.5	175	156	155	396	0	25.5	25.5
INS40/63/80	325	90	87.5	175	156	200	441	0	25.5	25.5
INS100/125/160	325	90	87.5	175	156	185	600	17.5	25.5	25.5
INS/INV250-100 to 250 A	416	115	100	200	210	204	600	22.5	30.8	30.8
INS320/400/500/630										

Manual source-changeover systems
 ComPacT NSX

Class PC and CB

Dimensions (mm)													
	A	B	C	D	F	G	H	J	K	L	M	N	P
NSX100/160/250 and NA	325	90	87.5	175	156	133	9.25	9	295	75.5	150	75	155
NSX400/630 and NA	416	115	100	200	210	157	5	24.6	386	100	175	74.5	179

Interlocking of extended rotary handles
(ComPacT NSX100 to NSX630 and ComPacT NSX100 NA to NSX630 NA)

Dimensions

Front-panel cutout

Y

								Y		Y	
Dimensions (mm)											
Type	A	B	C	D	F	G min	G max	H	J	P	Q
NSX100/160/250 and NA	325	90	87.5	175	156	171	600	9.25	9	25.5	25.5
NSX400/630 and NA	416	115	100	200	210	195	600	5	24.6	30.8	30.8

Manual source-changeover systems

ComPacT NSX

Class PC and CB

Dimensions (mm)	C2	C3	L	L16	$\mathbf{L 1 7}$	$\mathbf{L 1 8}$	R2	R18	R19	P5	P
Type	54	108	52.5	140	245	280	54	89	140	83	120
NSX100/160/250 and NA	92.5	182	70	185	325	370	71.5	116.5	185	107	150
NSX400/630 and NA											

Manual source-changeover systems

ComPacT NSX - Interlocking on a base plate

Class PC and CB

ComPacT NSX100 to NSX250 and ComPacT NSX100 NA to NSX250 NA

Dimensions, 3 or 4 poles
Fixed device
Withdrawable device

[1] Short terminal shields are mandatory.

Dimensions (mm) Type	L31	L32	P7	P8	P9	P32	P33	P50	P52	P54	ØT9	ØT10	U
NSX100/160/250 and NA	110.5	354	25	45	75	182	143	25	99.5	21	9	6	$\leqslant 32$
NSX400/630 and NA	150.5	466	25	45	100	256	215	25	123	21	9	6	$\leqslant 32$

Note: coupling accessory: only for changeover systems using fixed versions of ComPacT NSX circuit breakers.

Manual source-changeover systems

ComPacT NSX - Interlocking on a base plate
Class PC and CB

ComPacT NSX400 to NSX630 and ComPacT NSX400 NA to NSX630 NA

Dimensions, 3 or 4 poles

Note: coupling accessory: only for changeover systems using fixed versions of ComPacT NSX circuit breakers.

Vertical mounting

Fixed device

[1] Short terminal shields are mandatory.

Horizontal mounting

Note: for dimensions see page C-22.

Manual source-changeover systems

ComPacT NSX - Interlocking on a base plate
Class PC and CB

"Normal" and "Replacement" source devices: NSX100 to NSX250

Dimensions

Front-panel cutout

"Normal" and "Replacement" source devices: NSX400 to NSX630

Dimensions

Front-panel cutout

[^13]
Manual source-changeover systems

ComPacT NSX - Interlocking on a base plate
Class PC and CB
NSX400 to NSX630 as the "Normal" device, NSX100 to NSX250 as the "Replacement" device

Front-panel cutout

Z

Manual source-changeover systems

Downstream coupling accessory

Class PC and CB

Dimensions (mm) Type	G2	G3	G28	G29	G30	G52	K1	K2	K3	K4	K8	K9	K16
NSX100/160/250 and NA	118	181.5	244.5	96	152.5	178	35	35	51	156	70	170	8
NSX400/630 and NA	165.9	264.7	337.5	143.5	220.5	264.7	45	45	75	210	113.5	250.7	15
NS250 -100 to 250 A	105.5	169	232	83.5	140	165.5	35	35	51	156	57.5	157.5	25.5
INS320/400/500/630	141	240.7	313	119	195.6	240	45	45	75	210	88.5	225.7	37.5

Dimensions (mm)													
Type	L28	L29	L30	L31	L32	L33	L34	L35	L36	L37	L39	L40	ØT
NSX100/160/250 and NA	320	99.5	300	89.5	4.73	130.5	139.5	74.5	19.5	87.5	9.5	140	6
NSX400/630 and NA	425	130	400	117.5	5.15	175.3	184.7	98.5	26	115	9.85	184.7	6
INS250-100 to 250 A	320	83	300	72	12.8	130.5	139.5	74.5	21.5	70	8.5	140	6
INS320/400/500/630	425	107.5	400	95	17.35	175.3	184.7	98.5	26	92.5	12.65	184.7	6

[^14]
Manual source-changeover systems

ComPacT NS - Interlocking on a base plate
Class PC and CB
Interlocking of extended rotary handles
ComPact NS630b to 1600 and ComPacT NS630b NA to NS1600 NA
Dimensions

Front-panel cutout

Dimensions (mm)

| | A | B | C | D | F | G min | G max | H | J | P | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | R | R | |
| :--- | :--- |
| Type | 411 |
| NS630b/800/1000/1200/1600 | 63.5 |

Source-changeover systems

Mechanical interlocking using connecting rods
ComPacT NS and MasterPacT MTZ1
Class PC and CB

ComPacT NS630b to NS1600 and ComPacT NS630b NA to NS1600 NA devices one above the other

Fixed devices Withdrawable devices

Two MasterPacT MTZ1 devices (switch-disconnectors or circuit breakers) one above the other

Fixed devices

Withdrawable devices

Source-changeover systems

Mechanical interlocking using connecting rods
MasterPacT MTZ2/MTZ3
Class PC and CB
Two MasterPacT MTZ2/MTZ3 devices (switch-disconnectors or circuit breakers) one above the other

Source-changeover systems

Mechanical interlocking using connecting cables
ComPacT NS and MasterPacT MTZ1/MTZ2/MTZ3
Class PC and CB

Two MasterPacT MTZ1 devices (switch-disconnectors or circuit breakers) side-by-side Fixed devices Drawout devices

Combination of two MasterPacT MTZ1 and MTZ2/MTZ3 devices
(switch-disconnectors or circuit breakers) side-by-side
Fixed devices
Drawout devices

Source-changeover systems

Mechanical interlocking using connecting cables

ComPacT NS and MasterPacT MTZ1
Class PC and CB

Two MasterPacT MTZ1 devices (switch-disconnectors or circuit breakers) one above the other
Fixed devices Drawout devices

Source-changeover systems

Mechanical interlocking using connecting cables
MasterPacT MTZ
Class PC and CB

Two MasterPacT MTZ2/MTZ3 devices (switch-disconnectors or circuit breakers) one above the other

Fixed devices
Drawout devices

Two MasterPacT MTZ1 and MTZ2/MTZ3 devices (switch-disconnectors or circuit breakers) one above the other

Source-changeover systems

Mechanical interlocking using connecting cables
MasterPacT MTZ2/MTZ3
Class PC and CB
Two MasterPacT MTZ2/MTZ3 devices side-by-side
Fixed devices
Drawout devices

Three MasterPacT MTZ2/MTZ3 devices (switch-disconnectors or circuit breakers) side-by-
side
Fixed devices

Drawout devices

Source-changeover systems

Mechanical interlocking using connecting cables
MasterPacT MTZ2/MTZ3
Class PC and CB
Three MasterPacT MTZ2/MTZ3 devices (switch-disconnectors or circuit breakers) one above the other

TransferPacT

IVE unit, UA/BA controllers

IVE unit

UA/BA controllers

ACP control plate and UA/BA controllers

[1] Cutout according to DIN 43700 standard.

Standard configurations

Standard configurations

[^15]
Remote-operated source-changeover systems 2 ComPacT NSX100/630, NS630b/1600 or MasterPacT MTZ1/MTZ2/MTZ3 devices

Controlling each circuit breaker independently.
Control of two circuit breakers by "common" transfer order.
[1] See section "IMPORTANT" here after.
[2] Operating diagram: the SDE "fault-trip" signals are transmitted to the IVE unit. The SDE auxiliary contacts are mounted in the circuit breakers.

IMPORTANT

The relays controlling the closing order to the "Normal" and "Replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

It is recommended to use Tesys K relays from Schneider Electric reference LC2-K06010•๑. These relays are mechanically and electrically interlocked.

Legends
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order
CR "Replacement" source closing order
KA1 auxiliary relay
KA2 auxiliary relay
KA3 auxiliary relay
KA4 auxiliary relay
L1 "Normal" source "fault-trip" signal
L2 "Replacement" source "fault-trip" signal
N "Normal" source auxiliary wiring connector
R "Replacement" source auxiliary wiring connector

[^16]Remote-operated source-changeover systems
2 ComPacT NSX100/630 devices

Diagram no. 51201177

Source-changeover system without automatic-control system

Without auxiliaries for emergency off

in

Remote-operated source-changeover systems 2 ComPacT NSX100/630 devices
 Diagram no. 51201178

[1] Prefabricated wiring supplied.
[2] Independent auxiliary source.

Legends

"Norm motormechan

QR "Replacement" source ComPacT NSX equipped with motor mechanism
MN undervoltage release
OF2 breaker ON/OFF indication contact
SDE "fault-trip" indication contact
MT motor mechanism
IVE electrical interlocking and terminal block unit
BP emergency off button with latching
KA5 auxiliary relay
F1 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuits de-energized, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems
 2 ComPacT NSX100/630 devices

Diagram no. 51201179

[1] Prefabricated wiring supplied
2] This source can be:
\square the source present in the case of voltage monitoring

- an independent source.

In this case, the MX release must be protected.
[3] The reset orders must be delayed by 0.3 seconds.

Legends
QN "Normal" source ComPacT NSX equipped with motor mechanism
QR "Replacement" source ComPacT NSX equipped with motor mechanism
SDE "fault-trip" indication contact
OF2 breaker ON/OFF indication contact
MX shunt release
MT motor mechanism
IVE electrical interlocking and terminal block unit
KA5 time-delayed auxiliary relays
KA6 time-delayed auxiliary relays
F1 auxiliary power supply circuit breaker
F2 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system Normal Replacement

0
1

Remote-operated source-changeover systems 2 ComPacT NS630b/1600 devices

Diagram no. 51201183

Electrical interlocking by IVE unit

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
[1] Not to be wired on fixed version.
[2] Prefabricated wiring supplied.

Legends

QN "Normal" source ComPacT NS630b to 1600
QR "Replacement" source ComPacT NS630b to 1600
OF... breaker ON/OFF indication contact
SDE "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system
Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position,
open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MT...).

Remote-operated source-changeover systems 2 ComPacT NS630b/1600 devices

Diagram no. 51201184

Electrical interlocking by IVE unit with emergency off by shunt release

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
wire BK to terminal 82.

[1] Not to be wired on fixed version.
[2] Prefabricated wiring supplied.

[^17]States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position,
open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation, MX, MT...).

Remote-operated source-changeover systems 2 ComPacT NS630b/1600 devices

Diagram no. 51201185

Electrical interlocking by IVE unit with emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
[1] Not to be wired on fixed version.
[2] Prefabricated wiring supplied.

Legends							
QN	"Normal" source ComPacT NS630b to 1600						
QR	"Replacement" source ComPacT NS630b to 1600						
OF...	breaker ON/OFF indication contact						
SDE	"fault-trip" indication contact						
CE1	"connected-position" indication contact (carriage swi						
F1	auxiliary power supply circuit breaker						
IVE	electrical interlocking and terminal block un						
MN	undervoltage release						
BP	emergency off button with latching						
KA5	auxiliary relay						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
CN	"Normal" source closing order (0.25 second delay)						
CR	"Replacement" source closing order (0.25 second de						
MT	Motor	Mech					
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow			brown

States permitted by mechanical interlocking system
Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) $=$ supply voltage of electrical auxiliaries (electrical operation, MN, MT...).

Remote-operated source-changeover systems 2 MasterPacT MTZ1 or MTZ2/MTZ3 devices

Electrical interlocking by IVE unit with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

1] Not to be wired for the "without lockout after a fault" solution
[2] Not to be wired on fixed version.
[3] Prefabricated wiring supplied.

States permitted by mechanical interlocking system Normal Replacement
$0 \quad 0$
10

Note: diagram shown with circuit breakers in connected
position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems 2 MasterPacT MTZ1 or MTZ2 or MTZ3 devices

Electrical interlocking by IVE unit with lockout after a fault and emergency off by shunt release

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
wire BK to terminal 82.

[1] Not to be wired for the "without lockout after a fault" solution.
[2] Not to be wired on fixed version.
[3] Prefabricated wiring supplied.

Legends							
QN	"Normal" source MasterPacT MTZ1 or MTZ2 or MTZ3						
QR	"Replacement" source MasterPacT MTZ1 or MTZ2 or MTZ3						
MCH	spring-charging motor						
MX	standard opening voltage release						
XF	standard closing voltage release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
PF	"ready-to-close" contact						
CE1	"connected-position" indication contact (carriage switch)						
CH	"springs charged" indication contact						
IVE	electrical interlocking and terminal block unit						
KA5	auxiliary relay						
F1	auxiliary power supply circuit breaker						
BP	emergency off button with latching						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
CN	"Normal" source closing order (0.25 second delay)						
CR	"Replacement" source closing order (0.25 second delay)						
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system

Normal Replacement

0	0
1	0
0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation,
$\mathrm{MCH}, \mathrm{MX}, \mathrm{XF} \ldots$...).

Remote-operated source-changeover systems

2 MasterPacT MTZ1 or MTZ2 or MTZ3 devices

Electrical interlocking by IVE unit with lockout after a fault and emergency off by undervoltage release

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
wire BK to terminal 82.

[1] Not to be wired for the "without lockout after a fault" solution.
[2] Not to be wired on fixed version.
[3] Prefabricated wiring supplied.

Legends
QN "Normal" source MasterPacT MTZ1 or MTZ2 or MTZ3
QR "Replacement" source MasterPacT MTZ1 or MTZ2 or MTZ3
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
KA5 auxiliary relay
F1 auxiliary power supply circuit breaker
BP emergency off button with latching
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, MN, XF...).

Remote-operated source-changeover systems 2 MasterPacT MTZ1 or MTZ2 or MTZ3 devices

Automatic-control system for permanent replacement source with lockout after a fault (with MN)

[1] Not to be wired for the "without lockout after a fault" solution.
[2] Not to be wired on fixed version.
[3] Prefabricated wiring supplied.

The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

IMPORTANT

The relays controlling the closing order to the "Normal" and "Replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.
It is recommended to use Tesys K relays from Schneider Electric reference LC2-K06010•๑. These relays are mechanically and electrically interlocked.
Legends
QN "Normal" source MasterPacT MTZ1 or MTZ2 or MTZ3
QR "Replacement" source MasterPacT MTZ1 or MTZ2 or MTZ3
$\begin{array}{ll}\text { MCH } & \text { spring-charging motor } \\ \text { XF } & \text { standard closing voltag }\end{array}$
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
F1 auxiliary power supply circuit breaker
F2 circuit breaker (high breaking capacity)
S1 control switches
KA1 auxiliary relays
KA2 auxiliary relays
KA3 auxiliary relays

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system	
Normal Replacement 0 0 1 0 0 1	

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MN, XF...).

Remote-operated source-changeover systems

2 MasterPacT MTZ1 or MTZ2 or MTZ3 devices

Automatic-control system for replacement source generator set with lockout after a fault (with MN)

ATTENTION

The diagram shows the electrical wiring for circuit breakers.
[1] Not to be wired for the "without lockout after a fault" solution. When wiring the SDE with switch-disconnectors, connect

2] Not to be wired on fixed version wire BK to terminal 82.

IMPORTANT

The relays controlling the closing order to the "Normal" and "Replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.
It is recommended to use Tesys K relays from Schneider Electric reference LC2-K06010•๑. These relays are mechanically and electrically interlocked.

| Legends | | |
| :--- | :--- | :--- | :--- |
| QN | "Normal" source MasterPacT MTZ1 or MTZ2 or MTZ3 | |
| QR | "Replacemet" source MasterPacT MTZ1 or MTZ2 or MTZ3 | |
| MCH | spring-charging motor | |

[^18]
Source-changeover systems with UA controllers 2 ComPacT NSX100/630, NS630b/1600 or MasterPacT MTZ1/MTZ2/MTZ3 devices

Source-changeover system with UA controller

Load shedding and genset management

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages
"Normal" source voltage UN test

	$\begin{aligned} & \text { Ref. UA } \\ & \text { UA150 } \end{aligned}$	$\begin{aligned} & 29472 \\ & 29474 \end{aligned}$	$\begin{aligned} & 29472 \\ & 29474 \end{aligned}$	$\begin{aligned} & 29473 \\ & 29475 \end{aligned}$
8		$\left\lvert\, \begin{gathered} N / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}\right.$	$\begin{gathered} \varphi / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \varphi / \varphi \\ 380 / 415 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \\ 440 \mathrm{~V}-60 \mathrm{~Hz} \end{gathered}$
	$\mathrm{A}=0$			
	A $=1$			

"Replacement" source voltage UR test
The single-phase check for UR is
implemented across terminals 1 and 5 of circuit breaker Q2.

Q1 circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
Q2 circuit breaker supplying and protecting the automaticcontrol circuits for the "Replacement" source
ACP control plate
UA automatic controller
IVE electrical interlocking and terminal block unit

[^19]
Source-changeover systems with UA controllers

 Controller settingsSource changeover system with UA controller
Controller settings

Tests on "Normal" source voltage
A=0 single-phase test,
$A=1$ three-phase test.
Voluntary transfert (e.g. for energy management)

- action in the event of genset failure
$B=0$ circuit breaker N opens,
$B=1$ circuit breaker N remains closed.
- maximum permissible genset startup time (T6)
$C=0 \quad T=120 \mathrm{~s}$,
$C=1 \quad T=180 \mathrm{~s}$.
After this time has elapsed, the genset is considered to have failed.

Source-changeover systems with BA controllers 2 ComPacT NSX100/630, NS630b/1600 or MasterPacT MTZ1/MTZ2/MTZ3 devices

Source-changeover system with BA controller

Coupling

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages
The single-phase check for UN and UR is implemented across terminals 1 and 5 of circuit breakers Q1 and Q2.

Legends

Q1 circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
Q2 circuit breaker supplying and protecting the automaticcontrol circuits for the "Replacement" source

Remote-operated source-changeover systems

3 MasterPacT MTZ2/MTZ3 devices

2 normal sources and 1 replacement source: electrical interlocking without lockout after a fault

Legends
QN... "Normal" source MasterPacT MTZ2 or MTZ3
QR "Replacement" source MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
t1 order for transfer from "R" to "N1 + N2"
(QN1 and QN2 closing time delay $=0.25$ sec. minimum)
t2 order for transfer from "N1 + N2" to "R"
(QR closing time delay $=0.25 \mathrm{sec}$. minimum)

States permitted by mechanical interlocking system

Normal $\mathbf{1}$	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected
position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems 3 MasterPacT MTZ2/MTZ3 devices

2 normal sources and 1 replacement source: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
the SDE to terminals 81 and 84.

[^20]States permitted by mechanical interlocking system
Normal 1 Normal 2 Replacement

0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems

3 MasterPacT MTZ2/MTZ3 devices

2 normal sources and 1 replacement source: automatic-control system for generator set without lockout after a fault (with MN)

Legends

QN... "Normal" source MasterPacT MTZ2 or MTZ3
QR "Replacement" source MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relay
KA2 auxiliary relays with 10 to 180 sec. time delay
KA3 auxiliary relays with 0.1 to 30 sec . time delay
KA4 auxiliary relay
KA5 auxiliary relays with 0.25 sec . time delay
KA6 auxiliary relays with 0.25 sec . time delay

Remote-operated source-changeover systems 3 MasterPacT MTZ2/MTZ3 devices

2 normal sources and 1 replacement source: automatic-control system for generator set with lockout after a fault (with MN)


```
Legends
QN... "Normal" source MasterPacT MTZ2 or MTZ3
QR "Replacement" source MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relay
KA2 auxiliary relays with 10 to 180 sec. time delay
KA3 auxiliary relays with 0.1 to }30\textrm{sec}
KA4 auxiliary relay
KA5 auxiliary relays with 0.25 sec. time delay
KA6 auxiliary relays with 0.25 sec. time delay
KA7 auxiliary relay
KA8 auxiliary relay
```

States permitted by mechanical interlocking system and with associated automatism

Normal 1	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MN, XF...).

Remote-operated source-changeover systems

3 MasterPacT MTZ2/MTZ3 devices

3 sources with only 1 device closed: electrical interlocking without lockout after a fault

Legends
QS... "Source" MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
t1 order for transfer to "Source 1"
(QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
order for transfer to "Source 2"
(QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)
order for transfer to "Source 3"
(QS3 closing time delay $=0.25 \mathrm{sec}$. minimum)
States permitted by mechanical interlocking system
Source 1 Source 2 Source 3

0	0	0
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems 3 MasterPacT MTZ2/MTZ3 devices

3 sources with only 1 device closed: electrical interlocking with lockout after a fault

[^21]
Remote-operated source-changeover systems

 3 MasterPacT MTZ2/MTZ3 devices2 sources and 1 coupling: electrical interlocking without lockout after a fault

Legends

QS... "Source" MasterPacT MTZ2 or MTZ3
QC "Coupling" MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
t1 coupling order for "Source 1 failure" (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 failure" (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 1 restored" (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 restored " (QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)

States permitted by mechanical interlocking system Source 1 Source 2 Coupling

0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected
position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems 3 MasterPacT MTZ2/MTZ3 devices

Legend	
QS...	"Source" MasterPacT MTZ2 or MTZ3
QC	"Coupling" MasterPacT MTZ2 or MTZ3
MCH	spring-charging motor
MX	standard opening voltage release
XF	standard closing voltage release
OF...	breaker ON/OFF indication contact
SDE1	"fault-trip" indication contact
PF	"ready-to-close" contact
CE...	"connected-position" indication contact (carriage switch)
CH	"springs charged" indication contact
F1	auxiliary power supply circuit breaker
t1	coupling order for "Source 1 failure" (QC closing time delay $=0.25 \mathrm{sec}$. minimum)
t2	coupling order for "Source 2 failure" (QC closing time delay $=0.25 \mathrm{sec}$. minimum)
t3	coupling order for "Source 1 restored" (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
t4	coupling order for "Source 2 restored " (QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)
KA1	auxiliary relays
KA2	auxiliary relays
KA3	auxiliary relays

States permitted by mechanical interlocking system Source 1 Source 2 Coupling

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

Remote-operated source-changeover systems

 3 MasterPacT MTZ2/MTZ3 devices2 sources and 1 coupling: automatic-control system with lockout after a fault

ATTENTION
The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
the SDE to terminals 81 and 84.

Legends

QS... "Source" MasterPacT MTZ2 or MTZ3
QC "Coupling" MasterPacT MTZ2 or MTZ3
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault trip" indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relays with 10 to 180 sec . time delay
KA2 auxiliary relays with 0.1 to 30 sec . time delay
KA3 auxiliary relays with 10 to 180 sec . time delay
KA4 auxiliary relays with 0.1 to 30 sec . time delay
KA5 auxiliary relays with 0.25 sec . time delay
KA6 auxiliary relays with 0.25 sec . time delay
KA7 auxiliary relays with 0.25 sec . time delay

States permitted by mechanical interlocking system and with associated automatism

Source 1 Source 2 Coupling

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected
position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

References of source-changeover systems for 2 devices ComPacT INS40 to INS2500, INV100 to INV2500

References of source-changeover systems for 2 devices ComPacT NSX100 to NSX630

[2] See products pages.

References of source-changeover systems for 2 devices ComPacT NS630b to NS1600

Circuit breakers and switch-disconnectors
Mechanical interlocking for source-changeover systems
Interlocking

Interlocking using cables

Complete assembly with 2 adaptation fixtures + cables

2 ComPacT fixed devices	33911
2 ComPacT withdrawable devices	33914
1 ComPacT fixed + 1 ComPacT withdrawable device	33915

| Push button cover (mandatory) | 2×33897 |
| :--- | :--- | :--- |

Associated controller

The automatic-control option includes:
■ an IVE electrical-interlocking unit

- an ACP control plate
- a BA or UA controller, depending on the required functions
- a UA/BA adapter kit.

Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.
TransferPacT Electrical Interlocking

| IVE unit | | 24 to 250 V DC | $48 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$ |
| :--- | :--- | :--- | :--- | :--- |
| For 2 devices | | 440 V 60 Hz | |

TransferPacT Controllers

[^22]
References of source-changeover systems for 2 devices MasterPacT MTZ1

Circuit breakers and switch-disconnectors

Mechanical interlocking for source-changeover systems
 Interlocking using connecting rods
 Complete assembly with 2 adaptation fixtures + rods
 2 MasterPacT MTZ1 fixed devices
 2 MasterPacT MTZ1 drawout devices
 Push button cover (mandatory)
 2x LV833897

Associated controller
The automatic-control option includes:
an IVE electrical-interlocking unit

- an ACP control plate
- a BA or UA controller, depending on the required functions
- a UA/BA adapter kit.

Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.

TransferPacT Electrical Interlocking			
IVE unit		24 to 250 V DC	$\begin{aligned} & 48 / 415 \mathrm{~V} \mathrm{AC} \mathrm{50/60} \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	For 2 devices	29356	29352
	Wiring kit for connection of 2 fixed/drawout devices to the IVE unit		54655

TransferPacT Controllers

Control unit		110/127 V AC 50/60 Hz	220/240 V AC 50/60 Hz	$\begin{aligned} & 380 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	ACP + controller BA ${ }^{[2]}$		29470	29471
The	Plate ACP		29363	29364
	Controller BA		29376	29377
	ACP + controller UA ${ }^{[2]}$	29448	29472	29473
00	Plate ACP	29447	29363	29364
-	Controller UA	29446	29378	29380

[^23]
References of source-changeover systems for 2 devices MasterPacT MTZ2/MTZ3

Circuit breakers and switch-disconnectors

Mechanical interlocking for source-changeover systems for 2 devices

Interlocking of 2 devices using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 MasterPacT MTZ2/MTZ3 fixed devices

48612
48612
$2 x$ LV848536

Push button cover (mandatory)
2x LV848536
Note: Can be used with 1 MTZ2/MTZ3 fixed + 1 MTZ2/MTZ3 drawout.

Associated controller for 2 devices

> The automatic-control option includes:
> an IVE electrical-interlocking unit
> an ACP control plate
> a BA or UA controller, depending on the required functions
> a UA/BA adapter kit.

Note: the circuit breaker auxiliaries ($M C H, M X, X F$) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.
TransferPacT Electrical Interlocking

TransferPacT Controllers
Control unit

[^24]
References of source-changeover systems for 3 devices

MasterPacT MTZ2/MTZ3
Circuit breakers and switch-disconnectors
Mechanical interlocking for source-changeover systems for 3 devices
Interlocking of 3 devices using cables
Choose 3 adaptation fixtures (1 complete set with 3 adaptation fixtures + cables)
3 sources, only 1 device closed, fixed or drawout devices
2 sources, 1 coupling, fixed or drawout devices
2 normal, 1 replacement source, fixed or drawout devices
48609
Push button cover (mandatory)

Order form for source-changeover systems for 2 devices ComPacT INS40 to INS630

Switch-disconnectors
To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad

Two devices with direct rotary handles			
	INS250	INS320/400/500/630	
Two devices with extended rotary handles			
	INS40/63/80	INS100/125/160	
	INS250	INS320/400/500/630	
Downstream coupling accessory	INS250	INS320/400/500/630	
Long terminal shields	INS250	INS320/400/500/630	

Order form for source-changeover systems for 2 devices ComPacT INS40 to INS630
 Switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \square.
(one sheet per device, make copies if necessary)
Device identification:

Connections

Rear connection	2 short $\quad 2$ long
INS40/80 connectors	Distribution $3 \times 16^{\square}$ rigid/10 ${ }^{\text {a }}$ flexible
INS100/160 connectors	Snap-on $\leqslant 95^{\square}$ Distribution $4 \times 25^{\square}$ rigid $/ 16^{\square}$ flexible
INS250 connectors	Snap-on 1.5° to 95° (< 160 A) Snap-on 10^{\square} to 185° (<250 A) Volt. tap connector for 185° connector Clips for connectors Set of 10 Distribution $6 \times 1.5^{\square}$ to 35^{\square} rigid with interphase barriers
INS320/630 connectors	1 cable 35° to 300^{\square} 2 cables 35° to 240^{\square} Voltage tap connector for 185^{\square}

Voltage tap connector for 185° connector
Distribution Linergy DX
blocks

Indication and measurements

4P ammeter module	For INS250	Rating	100 A
			150 A
			250 A
	Adaptation kit required for direct handles		
	For INS320/630	Rating	400 A
			600 A
4P current-transformer module	For INS250	Rating	100 A
			150 A
			250 A
	For INS320/630	Rating	400 A
			600 A
Auxiliary contact	For INS40/160	10F/CAF/CAO	Standard
			Low level
	For INS250/630	1 OF/CAM	Standard
			Low level

Rotary handles

Extended front handles	INS40 to INS160	Black	Red on yellow front
	INS250	Black	Red on yellow front
	INS320 to INS630	Black	Red on yellow front
	For complete changeover assembly		INS250
			INS320/630

Locking of rotary handles

Padlocking	1 to 3 padlocks (in OFF position)	
Keylocking	Keylock adapter (keylock not included)	
	Keylocks Ronis 1351B.500 $\quad \square$ Profalux KS5 B24 D4Z	

Installation accessories

Front-panel escutcheon	For switch-disconnectors	
	For ammeter module, IP40	

Order form for source-changeover systems for 2 devices ComPacT NSX100 to NSX630

Circuit breakers and switch-disconnectors
To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad
Diagram for two ComPacT NSX devices

Without automatic control, without emergency off auxiliaries	(no. 51201177)	
Without automatic control, with emergency off by MN	(no. 51201178)	\square
Without automatic control, with emergency off by MX	(no. 51201179)	\square
Mechanical interlocking of two NSX100 to NSX630 devices		
(fixed, plug-in)		
Manually operated devices, mounted side by side:		
Two devices with toggles		
Two devices with rotary handles	\square	

Mechanical and electrical interlocking of two NSX100 to NSX630
devices
(fixed or plug-in)
Electrically operated devices, mounted side by side:
Select 1 base plate + IVE unit, the 4 auxiliary contacts and the options / accessories

Order form for source-changeover systems for 2 devices ComPacT NSX100 to NSX630

Circuit breakers and switch-disconnectors
(One sheet per device, make copies if necessary)
Name of customer:
Address for delivery:
Requested delivery date: Customer order no.:

To indicate your choices, check the applicable square boxes and enter the appropriate information in the rectangles

Q 1 - NORMAL SOURCE

Q 2 -REPLACEMENT SOURCE

Circuit breaker or switch disconnector			
ComPacT type NSX100/160/250		NSX400/630	
Rating		A	
Circuit breaker		B, F, N, H, S, L	
Switch-discon.		NA	
No. of poles		2, 3 or 4	
No. of poles protected		2d, 3d or 4d	
Fixed device		Front connections	
Plug-in/withdr.	Plug-in	Withdrawable	
Earth-leakage protection	ME, MH, MB		
Vigi module	Voltage	v	
	4 P option on 3P N		

Trip unit

External neutral CT
24 V DC power supply connector
ZSI wiring accessory for NS630b MTZ1/MTZ2/MTZ3
External power $24-30$ V DC supply module $100-125 \mathrm{~V} \mathrm{AC}$ 24 V DC $\quad 200-240$ V AC \square Battery module
Connection

Rear-connectio kit	Short Mixed	Long			
NSX100/250 connectors	Snap-on 1.5° to 95^{\square} (<160 A) Snap-on 25° to 95° (<250 A) Snap-on 120° to 185° (<250 A) Distribution $6 \times 1.5^{\circ}$ to $35^{\text {口 }}$ Aluminium 2 cables 50° to 120°				
NSX400/630 connectors	1 cable 35° to	1 cable 35^{\square} to $300{ }^{\text {a }}$			
Right-angle terminal extensions					
Straight extensions NSX100/250					
Edgewise extensions		rm. ext.	Dbl.-L term. ext.		
Spreader	NSX100/250 (one piece)			mm)	
	NSX400/630 (52.5 mm)		(70 mm)		
Cu cable lugs	NSX100/250	120^{\square}	$150{ }^{\circ}$	185^{\square}	
	NSX400/630		$240{ }^{\circ}$	$300{ }^{\square}$	
Al cable lugs	NSX100/250		150°	185^{\square}	
	NSX400/630		$240{ }^{\text {a }}$	$300{ }^{\square}$	
\checkmark mestt Input for connector	For lugs NSX100/250				
Terminal shields	NSX100/250			Long	
	NSX400/630			Long	
	Long for 52.5	spreade			
Interphase barriers				of 6	
2 insulating scrn. NSX100/250		NSX4	630	pitch	

2 insulating scrn. NSX100/250 \square NSX400/630 70 pitch
Test tool
Pocket battery for MicroLogic
Maintenance case
USB maintenance interface
Power supply 110-240 V AC
Spare MicroLogic cord

Indication and measurement

Remote operation

Electrical operation	Motor mechanism	AC	DC	v
Voltage releases	Instantaneous MX	AC	DC	v
	Instantaneous MN	AC	DC	v
	Fixed time delay MN	AC	DC	v
	Adjust. time delay MN	AC	DC	v

Rotary handles

Locking

Interlocking

Mechanical	Toggle operated		Rotary Handle	\square
By key (2 keylocks, 1 key) for rotary handle Locking kit without locks	Keylocks Ronis 1351B.500			Profalux KS5 B24 D4Z

Installation accessories

IP30 escutcheon for all types (toggle/rotary handle/motor mechanism)
IP30 escutcheon (with access to toggle + trip unit)
IP30 escutcheon for Vigi module
IP40 escutcheon for all types (toggle/rotary handle/motor mechanism)
IP40 escutcheon for Vigi module
IP40 escutcheon for Vigi or ammeter module
Toggle cover
Sealing accessories
DIN rail adapter
3P 60 mm busbar adapter
Plug-in / withdrawable configuration accessories

Adaptater for plug-in base (for terminal shield or interphase barriers)
Communication

Order form for source-changeover systems for 2 devices ComPacT NS630b to NS1600

Circuit breakers and switch-disconnectors
To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad
Diagram for two ComPacT NS devices

Electrical interlocking with lockout after fault:

Permanent replacement source (with IVE unit)
(no. 51201183)
With emergency off by MX (with IVE unit) (no. 51201184)
With emergency off by MN (with IVE unit) (no. 51201185)

Interlocking using connecting rods between two NS630b to NS1600 devices
Manually operated devices installed side-by-side:
For two fixed NS devices with extended rotary handles
Electrically operated devices installed one above the other:

Select a complete set including two adaptation fixtures and the connecting rods
Complete set for:

Interlocking using cables between two NS630b to NS1600 devices
Electrically operated devices installed one above the other or side-by-side:
Select a complete set including two adaptation fixtures and the cables

Complete set for:	2 fixed NS devices	
	2 withdrawable NS devices	
	1 fixed NS device + 1 withdrawable NS device	
Electrical interlocking between two NS630b to NS1600 devices		
1 IVE unit $48 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}$ 1 wiring kit for connection between 2 fixed / withdrawable devices to the IVE unit		
Automatic-control option		
Power supply $110 \mathrm{~V}-50 / 60 \mathrm{~Hz}$:	ACP + BA controller	
	ACP + UA controller	
	ACP + UA150 controller	
Power supply 220/240 V - 50/60 Hz:	ACP + BA controller	
	ACP + UA controller	
	ACP + UA150 controller	
Power supply 380/415 V - 50/60 Hz a	ACP + BA controller	
	ACP + UA controller	
	ACP + UA150 controller	

Order form for source-changeover systems for 2 devices ComPacT NS630b to NS1600

Circuit breakers and switch-disconnectors
(One sheet per device, make copies if necessary)

Name of customer:

Address for delivery:

Requested delivery date:
Customer order no.:

To indicate your choices, check the applicable square boxes and enter the appropriate information in the rectangles Device identification:
Q 1 - NORMAL SOURCE
Q 2 - REPLACEMENT SOURCE
Circuit breaker or switch disconnector

Communication

Eco COM module Modbus	Device		Chassis
Front Display Module (FDM121)		Mounting accessory	
Breaker ULP cord	$\mathrm{L}=0.35 \mathrm{~m}$		
	$\mathrm{L}=1.3 \mathrm{~m}$		
	$\mathrm{L}=3 \mathrm{~m}$		

Connections

Horizontal rear connections	Top		Bottom	
Vertical rear connections	Top		Bottom	
Front connections	Top		Bottom	
$4 \times 240^{\circ}$ bare cable connectors	NS -	C fixed		
+ shields				
Long connection shields	NS -	C fixed		
Vertical-connection adapters	NS -	C fixed		
Cable-lug adapters	NS -	C fixed		
Arc chute screen	NS -	C fixed		
Interphase barriers	NS -	C fixed		
Spreaders	NS -	C fixed		
VO - safety shutters on chassis	NS -	C fixed		

Indication contacts
SD trip indication (maximum 1)

- A 240 V

SDE fault-trip indication (maximum 1) (SDE integrated in electrically operated devices)
\square Low level
 $6 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC}$
OF ON/OFF indication contacts (maximum 3)

$$
6 \text { A-240 V AC }
$$

\square Low level
Carriage switches (possible combinations: $3 \mathrm{CE}, 2 \mathrm{CD}, 1 \mathrm{CT}$)

CE - "connected" position	6 A-240 V AC	Low level
CD - "disconnected" position	$6 \mathrm{~A}-240 \mathrm{~V}$ AC qty	Low level
CT - "test" position	$6 \mathrm{~A}-240 \mathrm{~V}$ AC qty	Low level

Auxiliary terminals for chassis alone Jumpers (set of 10)
3-wire terminal (30 parts) \square 6-wire terminal (10 parts)

Remote operation

Electrical operation	Standard		Communicating		
	Power supply	AC	DC	v	
Voltage releases	MX	AC	DC	v	
	MN	AC	DC	v	
	MN delay unit		Adjustable	Non-adjustab	

Rotary handles for fixed and withdrawable device

Direct	Black	Red on yellow front
Extended	Black	Red on yellow front
Telescopic handle for withdrawable device		
Indication auxiliary	6 A-240 V AC	2 early-make switches
		2 early-break switches

Locking

VDC - mismatch protection

Accessories

CDM - mechanical operation counter
CDP - escutcheon
CP - transparent cover for escutcheon
OP - blanking plate for escutcheon Mounting brackets for fixed NS Test kits

Order form for source-changeover systems for 2 devices MasterPacT MTZ1/MTZ2/MTZ3

Circuit breakers and switch-disconnectors
To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad
Diagram for 2 MasterPacT MTZ1/MTZ2/MTZ3 devices

Electrical interlocking with lockout after fault:

Permanent replacement source (with IVE unit)
With emergency off by MX (with IVE unit)
With emergency off by MN (with IVE unit)
Automatic control with lockout after fault:
Permanent replacement source (with IVE unit)
Engine generator set (with IVE unit)
Interlocking using connecting rods (MTZ1/MTZ2/MTZ3 devices one above the other)
Select a complete set including two adaptation fixtures and the connecting rods

Interlocking using cables (MTZ1/MTZ2/MTZ3 devices one above the other or side-by-side)
Select two adaptation fixtures (one for each device) and a set of two cables

Adaptation fixture for:	1 fixed MTZ1 device
(MTZ1/MTZ2/3 fixed and	1 drawout MTZ1 device
drawout devices may be	1 fixed MTZ2/3 device
mixed)	1 drawout MTZ2/3 device
	1 set of 2 cables (for two devices)

Electrical interlocking 2 MasterPacT MTZ1/MTZ2/MTZ3 devices
1 IVE unit $48 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}$
1 wiring kit for connection between 2 fixed / withdrawable devices to the IVE unit

Automatic-control option		
Power supply $220 / 240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$:	ACP + BA controller	
	ACP + UA controller	
	ACP + UA150 controller	
Power supply $380 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}:$	$\mathrm{ACP}+\mathrm{BA}$ controller	
	ACP + UA controller	-
	ACP + UA150 controller	

Order form for source-changeover systems for 2 devices MasterPacT MTZ1/MTZ2/MTZ3

Circuit breakers and switch-disconnectors
(One sheet per device, make copies if necessary)
Name of customer:
Address for delivery:

Requested delivery date:
Customer order no.:

To indicate your choices, check the applicable square boxes and enter the appropriate information in the rectangles
 Device identification:
Q 1 - NORMAL SOURCE
Q 2 - REPLACEMENT SOURCE
Circuit breaker or switch disconnector

(required for reverse supply)
BAT - battery module
Communication

indication and locking

Indication contacts

OF - ON/OFF indication contacts

Standard	$4 \mathrm{OF} 6 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC}(10 \mathrm{~A}-240 \mathrm{~V} \mathrm{AC}$ and low-level for MTZ2/3)		
Additional	1 block of 4 OF for MTZ2/3	max. 2	qty
EF - combined "connected/closed" contacts			
	$1 \mathrm{EF} 6 \mathrm{~A}-240 \mathrm{VAC}$ for MTZ2/3	max. 8	qty
	1 EF low-level for MTZ2/3	max. 8	qty

SDE - "fault-trip" indication contact

Standard	1 SDE 6 A-240 V AC	
Additional	1 SDE 6 A-240 V AC	1 SDE Low level
Programmable contacts		2 M2C contacts
Carriage switches	6 A-240 V AC	Low level
CE - "connected" position	max. 3 for MTZ2/3/ MTZ1	qty
CD - "disconnected" position	max. 3 for MTZ2/3, 2 for MTZ1	qty
CT - "test" position	max. 3 for MTZ2/3, 1 for MTZ1	qty
AC - MTZ2/3 actuator for 6 CE	-3 CD-0 CT additional carriage	qty

AC - MTZ2/3 actuator for 6CE-3CD-0CT additional carriage switches

Locking

VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:
VCPO - by padlocks
VSPO - by keylocks
Keylock kit (w/o keylock

1 keylock
2 identical keylocks, 1 key
2 keylocks, diff
Chassis locking in "disconnected" position
Keylock kit (w/o keylock)

1 keylock
2 identical keylocks, 1 key
2 keylocks, different keys
Optional connected/disconnected/test position locking
VPEC - door interlock
On right-hand side of chassis On left-hand side of chassis
VPOC - racking interlock
IPA - cable-type door interlock
IBPO - racking interlock between crank and OFF pushbutton for MTZ2/3
DAE - automatic spring discharge before breaker removal for MTZ2/3
VDC - mismatch protection device - chassis
Low level
6 A-240 V AC
BPFE - electrical closing pushbutton
Res - electrical reset option
RAR - automatic reset option
MN - undervoltage release
\mathbf{R} - delay unit (non-adjustable)
$\mathbf{R r}$ - adjustable delay unit
$\mathbf{2}^{\text {nd }} \mathbf{M X}$ - shunt release
Remote operation

Remote tripping
XF - closing voltage release
MX - opening voltage release
PF - "ready to close" contact
)
w level

Accessories

CDM - mechanical operation counter
CB - auxiliary terminal shield for chassis
CDP - escutcheon
CP - transparent cover for escutcheon
OP - blanking plate for escutcheon
Brackets for mounting MTZ2/3 fixed
On backplates

Order form for source-changeover systems for 3 devices MasterPacT MTZ2/MTZ3

Circuit breakers and switch-disconnectors
To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad
Diagram for 3 MasterPacT MTZ2/MTZ3 devices
2 "Normal" sources + 1 "Replacement" source:
Electrical interlocking without lockout after fault
Electrical interlocking with lockout after fault
2 "Normal" sources + 1 "Replacement" source with source selection:
Automatic control w/ engine generator set w/o lockout after fault
Automatic control w/ engine generator set w/ lockout after fault
3 sources, only 1 device ON:
Electrical interlocking without lockout after fault
Electrical interlocking with lockout after fault
2 "Normal" sources + 1 coupling:
Electrical interlocking without lockout after fault
Electrical interlocking with lockout after fault
Automatic control with lockout after fault:
Interlocking using cables (MTZ2/MTZ3 devices one above the other or side-by-side)

Select a complete set including three adaptation fixtures and the cables		
1 complete set for:	3 sources $/ 1$ device ON, fixed or drawout	\square
	2 sources +1 coupling, fixed or drawout	
	2 sources +1 replacement source, fixed or drawout	

Order form for source-changeover systems for 3 devices MasterPacT MTZ2/MTZ3

Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles
(one sheet per device, make copies if necessary)
Device identification:
Q 1 - NORMAL SOURCE
Q 2-REPLACEMENT SOURCE
Circuit breaker or switch-disconnector

MasterPacT type	MTZ2/MTZ3	
Rating	A	
Sensor rating	A	
Circuit breaker	N1, H1, H2, H3, L1	
Switch-disconnector	NA, HA, HF	
Number of poles	3 or 4	
Option: neutral on right side		
Device	Fixed	
	Drawout with chassis	
	Drawout without chassis (moving part only)	

Chassis alone without connections
MicroLogic control unit

Connections

Indication contacts
OF - ON/OFF indication contacts

Standard	4 OF 6 A-240 V AC (10 A-240 V AC and low-level)		
Additional	1 block of 4 OF	max. 2	qty
EF - combined "connected/closed" contacts			
	1 EF 6 A-240 V AC	max. 8	qty
	1 EF low-level	max. 8	qty

SDE - "fault-trip" indication contact

Remote operation

Remote ON/OFF	MCH - gear motor	v
	XF - closing voltage release	v
	MX - opening voltage release	v
	PF - "ready to close" contact Low level	
	$6 \text { A-240 V AC }$	
	BPFE - electrical closing pushbutton	
	Res - electrical reset option	v
	RAR - automatic reset option	
Remote tripping	MN - undervoltage release	v
	\mathbf{R} - delay unit (non-adjustable)	
	Rr - adjustable delay unit	
	$\mathbf{2}^{\text {eme }} \mathrm{MX}$ - shunt release	v

Locking

Accessories
CDM - mechanical operation counter
CB - auxiliary terminal shield for chassis
CDP - escutcheon
CP - transparent cover for escutcheon
OP - blanking plate for escutcheon
Brackets for mounting MTZ2/3 fixed

Schneider Electric Industries SAS

35, rue Joseph Monier
CS 30323
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $928298512 €$
www.se.com

04-2022

[^0]: Note: \quad Standard \square Optional

 * plastic cover need to close

[^1]: Note: \square Standard \square Optional

[^2]: "-" = No caution
 "I" = Interrupt

[^3]: * T 2 will reset if N becomes unavailable or A becomes unavailable

[^4]: * T 2 will reset if N becomes unavailable

[^5]: $T \quad$: Protection of the Transfer Switching Equipment is ensured but combination not very relevant
 T : Transfer Switching Equipment is totally coordinated up to the Icu of the circuit breaker installed on supply side : Transfer Switching Equipment is protected up to 36 kA rms / 75 kA peak
 \square : Protection of the Transfer Switching Equipment is not ensured.

[^6]: \square : Protection of the Transfer Switching Equipment/ circuit breaker is not ensured.

[^7]: O Standard. By simple modification of the standard rotary handle.
 [1] With extended rotary control. [2] Using a special tool.

[^8]: Note: lines X and Y indicate the axes of symmetry of the switch-disconnector. Reference plane \mathbf{Z} corresponds to the back of the switch-disconnector.

[^9]: [1] Mechanical and electrical durability not applicable to MasterPacT H3 and L versions.
 [2] Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.
 Note:
 ON : opening of N source
 CR: closing of R source
 OR: opening of R source
 CN : closing of N source

[^10]: [1] Mechanical and electrical durability not applicable to MasterPacT H3 and L1 versions, please refer to the MasterPacT NT/NW catalog

[^11]: MasterPacT MTZ

[^12]: Mounting on the front panel of the switchboard.

[^13]: Note for ComPacT NSX: For dimensions with the accessories (IP40 escutcheons and Vigi escutcheon protection collars), see Catalog ComPacT.

[^14]: [1] coupling accessory: only for changeover systems using fixed versions of ComPacT NSX circuit breakers.

[^15]: "Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping.

[^16]: Note: diagram shown with circuits de-energized, circuit breakers open and relays in normal position.

[^17]: Legends
 QN "Normal" source ComPacT NS630b to 1600
 QR "Replacement" source ComPacT NS630b to 1600
 OF... breaker ON/OFF indication contact
 SDE "fault-trip" indication contact
 CE1 "connected-position" indication contact (carriage switch)
 F1 auxiliary power supply circuit breaker
 IVE electrical interlocking and terminal block unit
 MX shunt release
 BP emergency off button with latching
 KA5 auxiliary relay
 ON "Normal" source opening order
 OR "Replacement" source opening order
 CN "Normal" source closing order (0.25 second delay)
 CR "Replacement" source closing order (0.25 second delay)
 MT Motor Mechanism

 | Wiring colour codes | | | | | | | |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | RD | GN | BK | VT | YE | GY | WH | BN |
 | red | green | black | violet | yellow | grey | white | brown |

[^18]: States permitted by mechanical interlocking system Normal Replacement

 | Normal | Replacement |
 | :--- | :--- |
 | 0 | 0 |
 | 1 | 0 |
 | 0 | 1 |

 Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
 Auxiliary power supply $=$ supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MCH, MN, XF...).

[^19]: Note: diagram shown with circuits de-energized, circuit breakers open and relays in normal position.

[^20]: Legends
 QN... "Normal" source MasterPacT MTZ2 or MTZ3
 QR "Replacement" source MasterPacT MTZ2 or MTZ3
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE1 "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 S1 control switches
 S2 source selection switches
 KA1 auxiliary relay
 KA2 auxiliary relays with 10 to 180 sec . time delay
 t1 order for transfer from "R" to "N1 + N2"
 (QN1 and QN2 closing time delay $=0.25$ sec. minimum)
 t2 order for transfer from "N1 + N2" to "R"
 (QR closing time delay $=0.25 \mathrm{sec}$. minimumm)

[^21]: Legends
 QS... "Source" MasterPacT MTZ2 or MTZ3
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE... "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 t1 order for transfer to "Source 1"
 (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
 t2 order for transfer to "Source 2"
 (QS2 closing time delay $=0.25 \mathrm{sec}$. minimum)
 t3 order for transfer to "Source 3"
 (QS3 closing time delay $=0.25 \mathrm{sec}$. minimum)
 KA1 auxiliary relays
 KA2 auxiliary relays
 KA3 auxiliary relays

 ## States permitted by mechanical interlocking system

 Source 1 Source 2 Source 3| 0 | 0 | 0 |
 | :--- | :--- | :--- |
 | 1 | 0 | 0 |
 | 0 | 1 | 0 |
 | 0 | 0 | 1 |

 Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
 Auxiliary power supply = supply voltage of auxiliary relays (KA...)
 = supply voltage of electrical auxiliaries (electrical operation, MCH, MX, XF...).

[^22]: [1] The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of source-changeover system.

[^23]: [1] Can be used with any combination of MTZ1 or MTZ2/MTZ3, fixed or drawout devices.
 [2] The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of source-changeover system.

[^24]: [1] Can be used with any combination of MTZ1 or MTZ2/MTZ3, fixed or drawout devices.
 [2] The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of sourcechangeover system.

