

An industry leading portfolio of offers delivering sustainable value

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading # of PEP's*
- · Circularity instructions

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.

CO₂ and P&L impact through... Resource Performance

Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO2 emissions.

Cost of ownership optimization through... Circular Performance

We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance

Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation

Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.

Our solutions....

Reactive energy management

In electrical networks, reactive energy results in increased line currents for a given active energy transmitted to loads.

The main consequences are:

- Need for oversizing of transmission and distribution networks by utilities,
- · Increased voltage drops and sags along the distribution lines,
- Additional power losses.

This results in increased electricity bills for industrial customers because of:

- Increased overall kVA demand,
- Increased energy consumption within the installations.
- Penalties applied by most utilities on reactive energy.

Reactive energy management aims to optimize your electrical installation by reducing energy consumption, and to improve power availability.

Reactive energy management ensures better utilization of electrical machines, optimized electrical conductor sizes and reduced penalties from the utilities. Availability of more energy at utilities ensures in the reduction of total Co. emissions for a sustainable future.

Utility power bills are typically reduced by 5 % to 10 %.

"Our energy con-sumption was

reduced by 9 %after we installed 10 capacitor banks with detuned reactors. Electricity bill optimised by 8 % and

A leading automotive parts manufacturer from France.

payback in 2 years."

"Energy consumption reduced by

with LV capacitor bank and active filter installed."

A leading Transportation system provider from Switzerland.

"70 capacitor banks with detuned reactors installed, energy consumption reduced by 10 %, electrcity bill optimised by 18 %, payback in just

1 year."

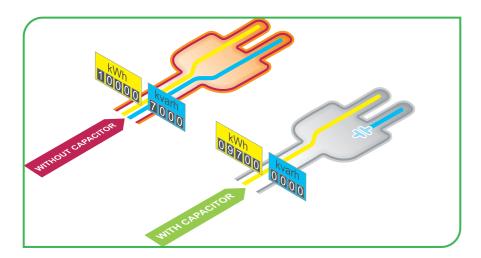
Largest Airport of Spain.

"Our network performance improved significantly after we installed 225 LV Detuned capacitor banks. The capacitor banks incorporates advanced metering system and remote communication ensures continued operation and minimal down time.'

Ministry of Electricity and Water,

Improve electrical networks and reduce energy costs

Power Factor Correction


Every electric machine needs active power (kW) and reactive power (kvar) to operate. The power rating of the installation in kVA is the combination of both: $(kVA)^2 = (kW)^2 + (kvar)^2$.

The Power Factor has been defined as the ratio of active power (kW) to apparent power (kVA).

Power Factor = (kW) / (kVA).

The objective of Reactive Energy management is improvement of Power Factor, or "Power Factor Correction".

The principle of "Power Factor Correction" (or "Reactive Energy compensation") is to generate the reactive power close to the load, so that the supply source could be relieved. when connected with the loads, Capacitors banks are most commonly used in electrical network to supply reactive energy.

In Electrical networks, all inductive equipment's i.e. Motors, Generators etc. absorb energy from network to create the magnetic field during excitation.

With this exchange of energy an additional consumption is used which is not useful.

This energy is called "Reactive" and measured in kvar.

Ensure Safety, Reliability and Performance for Installations

Safety

- Designed as per IEC 60831-1 & 2 with safety features integrated in Each phase
- Over-pressure system for safe disconnection of capacitor at the end of life
- All Component and materials are free of PCB pollutants

Quality and Reliability

- Continuity of Service thanks to the high performance and long life expectancy of Capacitors.
- 100% testing on each capacitor in manufacturing plant
- Design and Production with the highest international standards.

Efficiency and Productivity

- Product development including innovation in ergonomics and ease of installation and connection.
- Specially designed components to save time on installation and maintenance.
- All components and solutions available through a network of distributors and partners in more than 100 countries.

4

Thanks to the know-how developed over 50 years, Schneider Electric ranks as the global specialist in Energy management providing a unique and comprehensive portfolio.

Schneider Electric helps you to make the most of your energy with innovative, reliable and safe solutions.

V se.com/contact

Quality & Environment

ISO 18001, OSHAS include green buliding also (IGBC)

A major strength

In each of its units, Schneider Electric has an operating organization whose main role is to verify quality and ensure compliance with standards. This procedure is:

- compliance to Global Schneider Production System;
- recognized by many customers and official organizations.

However, its strict application has made it possible to obtain the recognition of independent organizations.

The quality system for design and manufacturing is certified in compliance with the requirements of the OSHAS, ISO 9001, ISO 14001 and ISO 18001 Quality Assurance model.

Stringent, systematic controls

During manufacturing each product and equipment undergoes systematic item undergoes systematic routine tests to verify its quality and compliance:

- measurement of operating capacity and tolerances;
- · measurement of losses;
- dielectric testing;
- checks on safety and locking systems;
- · checks on low-voltage components;
- verification of compliance with drawings and diagrams.

The results obtained are recorded and maintained by the Quality Control Department on the specific test certificate for each device.

RoHS, REACh Compliance

All LV PFC Components of Schneider Electric are RoHS, REACh Compliant.

Schneider Electric undertakes to reduce the energy bill and CO₂ emissions of its customers by proposing products, solutions and services which fit in with all levels of the energy value chain.

The Power Factor Correction and harmonic filtering offer form part of the energy efficiency approach.

A New, Safer and Robust solution for building your electrical installations

A comprehensive offer

Power Factor Correction and harmonic filtering form part of a comprehensive offer of products perfectly coordinated to meet all low-voltage power distribution needs. Use of these products in the electrical installation will result in:

- improved continuity of service;
- reduced power losses;
- guarantee of scalability;
- · efficient energy monitoring and management.

Thus enabling customer to have all the expertise and creativity for Optimized, reliable, expendable and compliant installation.

Tools for easier design and setup

With Schneider Electric, you have a complete range of Online configuration tools that support you in the knowledge and setup of products, all this in compliance with the standards in force and standard engineering practice.

These tools, technical notebooks and guides, design aid software, training courses, etc. are regularly updated.

Schneider Electric joins forces with your expertise and your creativity for optimized, reliable, expandable and compliant installations.

Because each electrical installation is a specific case, there is no universal solution.

The variety of combinations available allows you to achieve genuine customization of technical solutions

You can express your creativity and highlight your expertise in the design, development and operation of an electrical installation.

VII se.com/contact

General contents

Power Factor Correction guideline	3
Low Voltage capacitors	15
Detuned reactors	49
Power Factor controllers	55
Contactors	63
Appendix	69

Contents

Presentation

Why reactive energy management?	4
Method for determining compensation	6
Low Voltage capacitors with detuned reactors	10
Rated voltage and current	11
Capacitor selection guide	12

Construction of references Principle

13

Due to this higher

supplied current,

the circulation of

reactive energy

networks results in:

temperature rise

in power cables

Additional losses

Large voltage

Higher energy

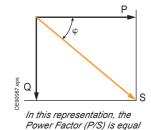
consumption and

Less distributed

active power.

drops

cost


in distribution

> Overload of

transformers
Higher

Why reactive energy management?

Why reactive energy management?

to coso.

Principle of reactive energy management

All AC electrical networks consume two types of power: active power (kW) and reactive power (kvar):

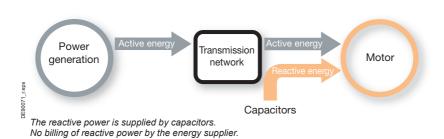
- The active power P (in kW) is the real power transmitted to loads such as motors, lamps, heaters, computers, etc. The electrical/active power is transformed into mechanical power, heat or light.
- The reactive power Q (in kvar) is used only to power the magnetic circuits of machines, motors and transformers.

The apparent power S (in kVA) is the vector combination of active and reactive power.

The circulation of reactive power in the electrical network has major technical and economic consequences. For the same active power P, a higher reactive power means a higher apparent power, and thus a higher current must be supplied.

The circulation of active power over time results in active energy (in kWh). The circulation of reactive power over time results in reactive energy (kvarh).

In an electrical circuit, the reactive energy is supplied in addition to the active energy.


Reactive energy supplied and billed by the energy provider.

DEMONORAL days

For these reasons, there is a great advantage in generating reactive energy at the load level in order to prevent the unnecessary circulation of current in the network. This is what is known as "**power factor correction**". This is obtained by the connection of capacitors, which produce reactive energy in opposition to the energy absorbed by loads such as motors

The result is a reduced apparent power, and an improved power factor P/S' as illustrated in the diagram opposite.

The power generation and transmission networks are partially relieved, reducing power losses and making additional transmission capacity available.

Benefits of reactive energy management

Optimized management of reactive energy brings economic and technical advantages.

Savings on the electricity bill

- Eliminating penalties on reactive energy and decreasing kVA demand.
- Reducing power losses generated in the transformers and conductors of the installation.

Example:

Loss reduction in a 630 kVA transformer PW = 6,500 W with an initial Power Factor = 0.7.

With power factor correction, we obtain a final Power Factor = 0.98. The losses become: 3,316 W, i.e. a reduction of 49 %.

Increasing available power

A high power factor optimizes an electrical installation by allowing better use of the components. The power available at the secondary of a MV/LV transformer can therefore be increased by fitting power factor correction equipment on the low voltage side.

The table opposite shows the increased available power at the transformer output through improvement of the Power Factor from 0.7 to 1

Power	Increased
factor	available
	power
0.7	0%
0.8	+14%
0.85	+21%
0.90	+28%
0.95	+36%
1	+43%

Reducing installation size

Installing power factor correction equipment allows conductor cross-section to be reduced, since less current is absorbed by the compensated installation for the same active power.

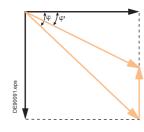
The opposite table shows the multiplying factor for the conductor cross-section with different power factor values.

Power factor	Cable cross- section multiplying factor
1	1
0.80	1.25
0.60	1.67
0.40	2.50

Reducing voltage drops in the installation

Installing capacitors allows voltage drops to be reduced upstream of the point where the power factor correction device is connected. This prevents overloading of the network and reduces harmonics, so that you will not have to overrate your installation.

4 se.com/contact


Method for determining compensation

Method for determining compensation

The selection of Power Factor Correction equipment can follow a 4-step process:

- · Calculation of the required reactive energy.
- Selection of the compensation mode:
- Central, for the complete installation
- By sector
- For individual loads, such as large motors.
- Selection of the compensation type:
- Fixed, by connection of a fixed-value capacitor bank;
- Automatic, by connection of a different number of steps, allowing adjustment of the reactive energy to the required value;
- Dynamic, for compensation of highly fluctuating loads.
- Allowance for operating conditions and harmonics.

Step 1: Calculation of the required reactive power

The objective is to determine the required reactive power $Q_{_{c}}$ (kvar) to be installed, in order to improve the power factor $\cos\phi$ and reduce the apparent power S.

For $\varphi' < \varphi$, we obtain: $\cos \varphi' > \cos \varphi$ and $\tan \varphi' < \tan \varphi$.

This is illustrated in the diagram opposite.

Qc can be determined from the formula Qc = P. (tan ϕ - tan ϕ), which is deduced from the diagram.

 $Q_{\rm c}$ = power of the capacitor bank in kvar.

P = active power of the load in kW.

 $\tan \varphi$ = tangent of phase shift angle before compensation.

 $\tan\phi^{\prime}$ = tangent of phase shift angle after compensation.

The parameters ϕ and tan ϕ can be obtained from billing data, or from direct measurement in the installation.

The following table can be used for direct determination.

Before comper	nsation		Reactive power (kvar) to be installed per kW of load, in order to get the required $\cos \varphi$ or $\tan \varphi$									
		tan φ'	0.75	0.62	0.48	0.41	0.33	0.23	0.00			
		cos φ'	0.80	0.85	0.90	0.925	0.95	0.975	1.000			
tan φ	COSφ											
1.73	0.5		0.98	1.11	1.25	1.32	1.40	1.50	1.73			
1.02	0.70		0.27	0.40	0.54	0.61	0.69	0.79	1.02			
0.96	0.72		0.21	0.34	0.48	0.55	0.64	0.74	0.96			
0.91	0.74		0.16	0.29	0.42	0.50	0.58	0.68	0.91			
0.86	0.76		0.11	0.24	0.37	0.44	0.53	0.63	0.86			
0.80	0.78		0.05	0.18	0.32	0.39	0.47	0.57	0.80			
0.75	0.80			0.13	0.27	0.34	0.42	0.52	0.75			
0.70	0.82			0.08	0.21	0.29	0.37	0.47	0.70			
0.65	0.84			0.03	0.16	0.24	0.32	0.42	0.65			
0.59	0.86				0.11	0.18	0.26	0.37	0.59			
0.54	0.88				0.06	0.13	0.21	0.31	0.54			
0.48	0.90					0.07	0.16	0.26	0.48			

Example: consider a 1000 kW motor with $\cos \varphi = 0.8$ ($\tan \varphi = 0.75$). In order to obtain $\cos \varphi = 0.95$, it is necessary to install a capacitor bank with a reactive power equal to $k \times P$, i.e.: Qc = 0.42 x 1000 = 420 kvar.

Step 2: Selection of the compensation mode

The location of low-voltage capacitors in an installation constitutes the mode of compensation, which may be central (one location for the entire installation), by sector (section-by-section), at load level, or some combination of the latter two. In principle, the ideal compensation is applied at a point of consumption and at the level required at any moment in time.

In practice, technical and economic factors govern the choice.

The location for connection of capacitor banks in the electrical network is determined by:

- th e overall objective (avoid penalties on reactive energy relieve transformer or cables, avoid voltage drops and sags)
- the operating mode (stable or fluctuating loads)
- the foreseeable influence of capacitors on the network characteristics
- the installation cost.

Supply Bus

CC

CC : Central Compensation GC : Group Compensation

IC: Individual Compensation

M : Motor Load

II IC

Transformer

Circuit breaker

II GC

Central compensation

The capacitor bank is connected at the head of the installation to be compensated in order to provide reactive energy for the whole installation. This configuration is convenient for a stable and continuous load factor.

Group compensation (by sector)

The capacitor bank is connected at the head of the feeders supplying one particular sector to be compensated. This configuration is convenient for a large installation, with workshops having different load factors.

Compensation of individual loads

The capacitor bank is connected right at the inductive load terminals (especially large motors). This configuration is very appropriate when the load power is significant compared to the subscribed power. This is the ideal technical configuration, as the reactive energy is produced exactly where it is needed, and adjusted to the demand.

Method for determining compensation

Step 3: Selection of the compensation type

Different types of compensation should be adopted depending on the performance requirements and complexity of control:

- Fixed, by connection of a fixed-value capacitor bank
- Automatic, by connection of a different number of steps, allowing adjustment of the reactive energy to the required value
- Dynamic, for compensation of highly fluctuating loads.

Fixed compensation

This arrangement uses one or more capacitor(s) to provide a constant level of compensation. Control may be:

- Manual: by circuit-breaker or load-break switch
- Semi-automatic: by contactor
- Direct connection to an appliance and switched with it.

These capacitors are installed:

- At the terminals of inductive loads (mainly motors)
- At busbars supplying numerous small motors and inductive appliances for which individual compensation would be too costly
- In cases where the load factor is reasonably constant.

Automatic compensation

This kind of compensation provides automatic control and adapts the quantity of reactive power to the variations of the installation in order to maintain the targeted cos j. The equipment is installed at points in an installation where the active-power and/or reactive-power variations are relatively large, for example:

- on the busbars of a main distribution switchboard
- on the terminals of a heavily-loaded feeder cable.

Where the kvar rating of the capacitors is less than or equal to 15 % of the power supply transformer rating, a fixed value of compensation is appropriate. Above the 15 % level, it is advisable to install an automatically-controlled capacitor bank.

Control is usually provided by an electronic device (Power Factor Controller) which monitors the actual power factor and orders the connection or disconnection of capacitors in order to obtain the targeted power factor. The reactive energy is thus controlled by steps. In addition, the Power Factor Controller provides information on the network characteristics (voltage amplitude and distortion, power factor, actual active and reactive power ...) and equipment status. Alarm signals are transmitted in case of malfunction.

Connection is usually provided by contactors. For compensation of highly fluctuating loads use of active filters or Electronic Var Compensators(EVC) are recommened. Contact Schneider Electric for electronic compensation solutions.

Dynamic compensation

This kind of compensation is required when fluctuating loads are present, and voltage fluctuations have to be prevented. The principle of dynamic compensation is to associate a fixed capacitor bank and an electronic var compensator, providing either leading or lagging reactive currents. The result is continuously varying fast compensation, perfectly suitable for loads such as lifts, crushers, spot welding, etc.

Method for determining compensation

To know more about the influence of harmonics in electrical installations, see appendix page 61

Step 4: Allowing for operating conditions and harmonics

Capacitors should be selected depending on the working conditions expected during their lifetime.

Allowing for operating conditions

The operating conditions have a great influence on the life expectancy of capacitors. The following parameters should be taken into account:

- Ambient Temperature (°C)
- Expected over-current, related to voltage disturbances, including maximum sustained overvoltage
- Maximum number of switching operations/year
- Required life expectancy.

Allowing for harmonics


Depending on the magnitude of harmonics in the network, different configurations should be adopted.

- Standard capacitors: when no significant non-linear loads are present.
- Harmonic rated capacitors used with detuned reactors. Applicable
 when a significant number of non-linear loads are present. Reactors are
 necessary in order to prevent the amplification of harmonic currents and
 avoid resonance.
- Active filters: when non-linear loads are predominant, use of active filters are recommended for harmonic mitigation. Solutions can be recommended based on computer simulations or on site measurement of the network.

Capacitor selection

Different ranges with different levels of ruggedness are proposed:

- "EasyLogic™": Capacitors for standard operating conditions, and when no significant non-linear loads are present.
- "PowerLogic™ Can & Box": Capacitors for stringent operating conditions, particularly voltage disturbances, or when a few non-linear loads are present. The rated current of capacitors must be increased in order to cope with the circulation of harmonic currents.
- Capacitors with detuned reactors: applicable when a significant number of non-linear loads are present.

8 se.com/contact
Life is On | Schneider Electric 9

Low Voltage capacitors with detuned reactors

Capacitors and reactors are configured in a series resonant circuit, tuned so that the series resonant frequency is below the lowest harmonic frequency present in the system

Reactors should be associated with capacitor banks for Power Factor Correction in systems with significant non-linear loads, generating harmonics. Capacitors and reactors are configured in a series resonant circuit, tuned so that the series resonant frequency is below the lowest harmonic frequency present in the system.

For this reason, this configuration is usually called "Detuned Capacitor Bank", and the reactors are referred to as "Detuned Reactors".

The use of detuned reactors thus prevents harmonic resonance problems, avoids the risk of overloading the capacitors and helps reduce voltage harmonic distortion in the network.

The tuning frequency can be expressed by the relative impedance of the reactor (in %), or by the tuning order, or directly in Hz.

The most common values of relative impedance are 5.7. 7 and 14 % (14 % is used with high level of 3rd harmonic voltages).

Relative impedance (%)	Tuning order	Tuning frequency @50Hz (Hz)	Tuning frequency @60Hz (Hz)
5.7	4.2	210	250
7	3.8	190	230
14	2.7	135	160

The selection of the tuning frequency of the reactor capacitor depends on several factors:

- Presence of zero-sequence harmonics (3, 9, ...)
- Need for reduction of the harmonic distortion level
- Optimization of the capacitor and reactor components
- Frequency of ripple control system if any.
- To prevent disturbances of the remote control installation, the tuning frequency should be selected at a lower value than the ripple control
- In a detuned filter application, the voltage across the capacitors is higher than the system's rated voltage. In that case, capacitors should be designed to withstand higher voltages.
- Depending on the selected tuning frequency, part of the harmonic currents is absorbed by the detuned capacitor bank. In that case, capacitors should be designed to withstand higher currents, combining fundamental and harmonic currents.

Effective reactive energy

In the pages relating to detuned capacitor banks, the reactive energy (kvar) given in the tables is the resulting reactive energy provided by the combination of capacitors and reactors.

Capacitor rated voltage

Capacitors have been specially designed to operate in detuned bank configurations. Parameters such as the rated voltage, over-voltage and over-current capabilities have been improved, compared to standard configuration.

According to IEC 60831-1 standard, the rated voltage (U_N) of a capacitor is defined as the continuously admissible operating voltage.

The **rated current (I_N)** of a capacitor is the current flowing through the capacitor when the rated voltage (U_N) is applied at its terminals, supposing a purely sinusoidal voltage and the exact value of reactive power (kvar) generated.

Capacitor units shall be suitable for continuous operation at an r.m.s. current of (1.3 x I_N).

In order to accept system voltage fluctuations, capacitors are designed to sustain over-voltages of limited duration. For compliance to the standard, capacitors are for example requested to sustain over-voltages equal to 1.1 times U_N, 8 h per 24 h.

PowerLogic™ and EasvLogic™

capacitors have been designed and tested extensively to operate safely on industrial networks. The design margin allows operation on networks including voltage fluctuations and common disturbances. Capacitors can be selected with their rated voltage corresponding to the network voltage. For different levels of expected disturbances, different technologies are proposed, with larger design margin for capacitors adapted to the most stringent working conditions (EasyLogic[™], PowerLogic[™], PowerLogic[™] Xtreme Heavy Duty).

PowerLogic™ and EasyLogic™ with Detuned Reactor

capacitors when used along with Detuned Reactors have to be selected with a rated voltage higher than network service voltage (U_s). In detuned filter applications, the voltage across the capacitor is higher than the network service voltage (U_s).

The recommended rated voltage of capacitors to be used in detuned filter applications with respect to different network service voltage (U_s) and relative impedance is given in the table below.

These values ensure a safe operation in the most stringent operating

Less conservative values may be adopted, but a case by case analysis is necessary.

, ,		Network Service Voltage U _s (V)						
		50 Hz		60 Hz				
		400	690	400	480	600		
Relative Impedance (%)	5.7 7	480	830	480	575	690		
	14	480		480				

Capacitor selection guide

Construction of references Principle

Capacitors must be selected depending on the working conditions expected during their lifetime.

Solution	Offer	Description	Recommended use for	Max. condition
EasyLogic [™] PFC	Can Construction	Standard capacitor	Networks with non significant non-linear loads	$N_{LL} \le 10 \%$
			> Standard over-current	1.5 I _N
			 Standard operating temperature 	55 °C (class D)
			> Normal switching frequency	5,000/year
			> Standard life expectancy	Up to 100,000h*
	Can	Heavy-duty	> A few non-linear loads	$N_{LL} \leq 15 \%$
	Construction	capacitor	> Significant over-current	1.6 I _N
			Standard operating temperature	55 °C (class D)
			Significant switching frequency	6,000/year
			> Long life expectancy	Up to 120,000h*
PoweLogic™	Can	Heavy-duty	> A few non-linear loads	$N_{LL} \leq 20~\%$
PFC	Construction	capacitor	> Significant over-current	1.8 I _N
			Standard operating temperature	55 °C (class D)
			Significant switching frequency	7,500/year
			> Long life expectancy	Up to 130,000h*
	Box	Xtreme	> Significant non-linear loads	$N_{LL} \leq 25~\%$
	Construction	-	> Significant over-current	2.1 I _N
		duty capacitor	Higher Operating Temperature	60 °C
			> Higher switching frequency	10000/year
			> Much Longer Life expectancy	Up to 150,000h*

^{*} The maximum life expectancy is given considering standard operating conditions: rated voltage (U_N), rated current (I_N), 35 °C ambient temperature. WARNING: the life expectancy will be reduced if capacitors are used in maximum working conditions.

Since the harmonics are caused by non-linear loads, an indicator for the magnitude of harmonics is the ratio of the total power of non-linear loads to the power supply transformer rating.

This ratio is denoted N_{LL}, and is also known as G_h/S_n: N_{LL} = Total power of non-linear loads (G_h) / Installed transformer rating (S_n).

Example:

- Power supply transformer rating: $S_n = 630 \text{ kVA}$
- Total power of non-linear loads: $G_h = 150 \text{ kVA}$
- $N_{LL} = (150/630) \times 100 = 24 \%$

It is recommended to use Detuned Reactors with Harmonic Rated Capacitors (higher rated voltage than the network service voltage - see the Harmonic Application Tables) for $N_{LL} > 20 \%$ and up to 50 %.

Note: there is a high risk in selecting the capacitors based only on N_{II} as the harmonics in grid may cause current amplification and capacitors along with other devices may fail. Refer to page 61 for further details.

Capacitors

В	L	R	С	Н	1	0	4	Α	1	2	5	В	4	0
			Construction	Range	Pow	er er							Voltage	
			C = CAN	S= Easylogic SD	at 50) Hz			Pow	er at	60 H	Z	24 - 240	V
			B = BOX	P= EasyLogic HD	10.4	kvar	at 50) Hz	12.5	kvar	at 60) Hz	40 - 400 V	
				H= PowerLogic HD	A = {	50 Hz	_		B = 60 Hz			44 - 440 V		
				E= PowerLogic Energy					"000B" means:		48 - 480	V		
				SM = EasyLogic SD Single					labe	lled o	only fo	or	52 - 525	V
				phase					50 F	Ιz			57 - 575	V
				HM= PowerLogic HD Single						60 - 600	V			
				Phase	Phase						69 - 690	V		
													83 - 830	V

Example:

BLRCS200A240B44 = EasyLogic[™] SD, 440 V, 20 kvar at 50 Hz and 24

Detuned reactors

L	V	R	0	5	1	2	5	Α	6	9 T
		Detuned Reactor	Rela	ative impedance	Pow	/er		Freq.	Voltage	
					12.5	kvar		A = 50 Hz	40 - 400 '	V
			05 =	5.7 %				B = 60 Hz	48 - 480 '	V
			07 = 7 %						60 - 600 '	V
			14 =	= 14 %					69 - 690	V

LVR05125A69T = Detuned Reactor, 690 V, 5.7 %, 12.5 kvar, 50 Hz.

Low Voltage capacitors

Contents

Presentation	
Power Factor Correction guideline Low Voltage capacitors	3 15
Offer Overview	16
EasyLogic [™] PFC	18
PowerLogic™PFC	26
Can type capacitor mechanical characteristics	34
PowerLogic [™] PFC Xtreme Heavy Duty	36
Xtreme Heavy Duty Capacitor mechanical characteristics	41
Detuned reactors Power Factor controllers Contactors Appendix	49 55 63 69

$\mathsf{EasyLogic^{TM}\,PFC\,SD}$

EasyLogic™ PFC Single Phase Capacitor

	EasyLogic™ PFC SD					
Construction	Extruded aluminium can					
Voltage range	230 V - 525 V					
Power range	1-30.3 kvar					
Peak inrush current	Up to 200 x I _N					
Overvoltage	1.1 x U _N 8 h every 24 h					
Overcurrent	1.5 x I _N					
Mean life expectancy	Up to 100,000 h					
Safety	Self-healing + 3Phase pressure sensitive disconnector (PSD) in 3Phase capacitor and 2Phase pressure sensitive disconnector (PSD) in 1Phase capacitor + non accessible inbuilt discharge device (50 V/1 min)					
Dielectric	Metallized Polypropylene film with Zn/Al alloy					
Impregnation	Non-PCB, Biodegradable soft resin					
Ambient temperature	min25 °C max 55 °C/Class D					
Protection	IP20(for fast-on and clamptite), indoor IP00 (for stud type)					
Mounting	Upright					
Terminals	■ Double fast-on + cable ■ CLAMPTITE - terminals with electric shock protection (finger-proof) ■ Stud type terminal (2 terminals for single phase)					

EasyLogic™ PFC HD

EasyLogic™ PFCThree Phase Capacitor

	EasyLogic™ PFC HD
Construction	Extruded aluminium can
Voltage range	480 V - 525 V
Power range	7.5-45.2 kvar
Peak inrush current	Up to 220 x I _N
Overvoltage	1.1 x U _N 8 h every 24 h
Overcurrent	1.6 x I _N
Mean life	Up to 120,000 h
expectancy	
Safety	Self-healing + 3Phase pressure sensitive disconnector (PSD) in 3Phase capacitor and 2Phase pressure sensitive disconnector (PSD) in 1Phase capacitor + non accessible inbuilt discharge device (50 V/1 min)
Dielectric	Metallized Polypropylene film with Zn/Al alloy
Impregnation	Non-PCB, Biodegradable soft resin
Ambient temperature	min25 °C max 55 °C/Class D
Protection	IP20(for fast-on and clamptite), indoor IP00 (for stud type)
Mounting	Upright
Terminals	■ Double fast-on + cable ■ CLAMPTITE - terminals with electric shock protection (finger-proof) ■ Stud type terminal

PowerLogic[™] PFC HD

PowerLogic™ PFC Three Phase Capacitor

	PowerLogic™ PFC HD
Construction	Extruded aluminium can
Voltage range	230 V - 830 V
Power range	1 - 57.1 kvar
Peak inrush current	Up to 250 x I _N
Overvoltage	1.1 x U _N 8 h every 24 h
Overcurrent	1.8 x I _N
Mean life expectancy	Up to 130,000 h
Safety	Self-healing + 3Phase pressure sensitive disconnector (PSD) in 3Phase capacitor and 2Phase pressure sensitive disconnector (PSD) in 1Phase capacitor + non accessable inbuilt discharge device (50 V/1 min)
Dielectric	Metallized Polypropylene film with Zn/Al alloy with special profile metallization and wave cut
Impregnation	Non-PCB, Bio-degradable sticky resin(PU)
Ambient temperature	min25 °C max 55 °C/Class D
Protection	IP20(for fast-on and clamptite), indoor IP00 (for Stud type)
Mounting	Upright, horizontal
Terminals	■ Double fast-on + cable CLAMPTITE - Three-phase terminal with electric shock protection (finger-proof) ■ Stud type terminal (> 30 kvar)

PowerLogic[™] PFC Xtreme Heavy Duty

	PowerLogic™ PFC
	Xtreme Heavy Duty
Construction	Steel sheet enclosure
Voltage range	400 V - 525 V
Power range (three-phase)	5- 75 kvar
Peak inrush current	Up to 350 x I _N
Overvoltage	1.1 x U _N 8 h every 24 h
Overcurrent	1.8 x I _N
Mean life expectancy	Up to 150,000 h
Safety	Self-healing + 3 phase pressure-sensitive disconnector (PSD) independent of mechanical assembly + inbuilt discharge device (50 V/1 min) + double enclosure protection (Aluminum can inside steel box)
Dielectric	Metallized Polypropylene film with Zn/Al alloy with special profile metallization and wave cut
Impregnation	Non-PCB, Biodegradable soft resin
Ambient temperature	min25 °C max 60 °C
Protection	IP20, Indoor
Mounting	Upright
Terminals	Bushing terminals designed for large cable termination

EasyLogic[™] PFC SD Can Single Phase & Three Phase

EasyLogic[™] PFC SD Can Single Phase & Three Phase

An easy choice for savings which is optimized to deliver the performance you need. Suitable for standard operating conditions to deliver safe and reliable performance.

EasyLogic[™] three phase

EasyLogic[™] single phase

Operating conditions

- For networks with insignificant non-linear loads: (N₁₁ ≤ 10 %).
- Standard voltage disturbances.
- Standard operating temperature up to 55 °C.
- Normal switching frequency up to 5000 /year.
- Maximum current (including harmonics) is 1.5 x I_N.

Technology

Constructed internally with single-phase capacitor elements assembled in an optimized design. Each capacitor element is manufactured with metallized polypropylene film.

The active capacitor elements are covered in a specially formulated biodegradable, non-PCB, polyurethane soft resin. This ensures thermal stability and heat removal from inside the

The unique finger-proof CLAMPTITE termination is fully integrated with discharge resistors. It allows suitable access to tightening and cable termination without any loose connections.

For Lower ratings, double fast-on terminals with integrated cables are provided for easy and faster connection, reducing the risk of terminal overheating and failure.

- Safety

 Self-healing.
- Pressure-sensitive disconnecter on all the phase.
- Discharge resistors fitted non removable.
- Finger-proof CLAMPTITE terminals to reduce risk of accidental contact and to ensure firm termination (10 to 30.3 kvar in three phase and 8.3 - 15.1 kvar in single phase).

- Easy installation & maintenance
 Optimized design for safety, reliability with required performance, Optimized size to ensure easy installation and upto 20% space saving in cubicles.
- New CLAMPTITE terminals for easy of connection that maintains the terminal tightness with IP20 protection.
- Non accessaile in-built discharge resistors to ensure safety.
- Single point/Stud for mounting and earthing.
 Simultaneous and safe disconnection of all the phases at end of life in EasyLogic™.
- Stacked design and resin filled technology for better heat dissipation/cooling.

Benefits

- Easy installation
- Easy for reliablity and safe usage.
- Easy for quality assurance.
- Easy choice for building your solutions with other Schneider Electric components.
- Easy choice for savings.

Technical specifications

General o	characteristics							
Standards		IEC 60831-1/2						
Voltage range		230V to 525V in Three Phase & 220-440V in Single Phase						
Frequency		50 / 60 Hz						
Power range		1-30.3 kvar						
Losses (dielect	ric)	< 0.2 W/kvar						
Losses (total)		< 0.5 W/kvar						
Capacitance to	lerance	-5 %, +10 %						
Voltage test	Between terminals	2.15 x U _N (AC), 10 s						
	Between terminal & container	3 kV (AC), 10 s or 3.66 kV (AC), 2 s						
	Impulse voltage	8 kV						
Discharge resis	stor	Fitted, standard discharge time 60s						
Working	conditions							
Ambient tempe		-25 / 55 °C (Class D)						
Humidity		95 %						
Altitude		2,000 m above sea level						
Overvoltage		1.1 x U _N 8 h in every 24 h						
Overcurrent		Up to 1.5 x I _N						
Peak inrush cu	rrent	200 x I _N						
Switching oper	ations (max.)	Up to 5,000 switching operations per year						
Mean Life expe	ectancy	Up to 100,000 hrs						
Harmonic conte	ent withstand	N _{LL} ≤ 10 %						
Installatio	on characteristi	cs						
Mounting posit	ion	Indoor, upright						
Fastening		Threaded M12 stud at the bottom						
Earthing								
Terminals		■ CLAMPTITE - terminals with electric shock protection (finger-proof) & double fast-on terminal in lower kvar ■ Stud type terminal: □ Three way stud type terminals for the ratings above 30.3 kvar in three phase capacitors (2 terminals for single phase) □ Two way stud terminals for ratings above 15.1 kvar in single phase						
Safety fea	atures							
Safety		Self-healing + Pressure-sensitive disconnector + Discharge device						
Protection		IP20 (for fast-on and clamptite)						
Construc	tion							
Casing		Extruded Aluminium Can						
Dielectric		Metallized polypropylene film with Zn/Al alloy						
Impregnation		Biodegradable, Non-PCB, poly urethane soft resin						

▲ WARNING

HAZARD OF ELECTRICAL SHOCK

Wait 5 minutes after isolating supply before handling

Failure to follow these instructions can result in injury or equipment damage

18 se.com/contact Life is On | Schneider Electric 19

EasyLogic[™] PFC SD Can Single Phase

EasyLogicTM PFC SD Can Three Phase

50 Hz							μF (X1)	Case Code	Reference Number
Q _N (kvar))								
230 V	240 V	250 V	280 V	300 V	400 V	440 V			
0.25	0.27	0.29	0.37	0.42	0.75	-	15.9	ECM	BLRCSM008A010B40
0.50	0.54	0.59	0.74	0.8	1.5	-	29.9	GCM	BLRCSM015A018B40
0.83	0.90	1.0	1.2	1.4	2.5	-	49.8	GCM	BLRCSM025A030B40
1.0	1.1	1.2	1.5	1.7	3.0	-	59.7	GCM	BLRCSM030A036B40
1.1	1.2	1.4	1.7	2.0	3.5	4.2	69.1	GCM	BLRCSM042A050B44
1.4	1.5	1.6	2.0	2.3	4.2	-	83.6	KCM	BLRCSM042A050B40
1.5	1.6	1.8	2.2	2.5	4.5	-	89.6	KCM	BLRCSM045A054B40
2.5	2.7	3.0	3.7	4.3	7.6	-	151.3	LCM	BLRCSM076A091B40
2.8	3.0	3.3	4.1	4.7	8.3	-	165.2	RCM	BLRCSM083A100B40
5.0	5.4	5.9	7.4	8.5	15.1	-	300.6	RCM	BLRCSM151A181B40
7.1	7.7	8.4	10.5	12.1	21.5	-	427.9	TCM	BLRCSM215A258B40
7.4	8.1	8.8	11.0	12.7	22.5	-	447.9	TCM	BLRCSM225A270B40
7.7	8.4	9.1	11.4	13.1	23.3	-	463.8	TCM	BLRCSM233A280B40
8.5	9.3	10.1	12.6	14.5	25.8	-	513.5	VCM	BLRCSM258A310B40
9.2	10.1	10.9	13.7	15.7	28.0	-	557.3	VCM	BLRCSM280A336B40
10.0	10.9	11.8	14.8	17.0	30.2	-	601.1	VCM	BLRCSM302A362B40
10.6	11.6	12.6	15.8	18.1	-	-	640.5	TCM	BLRCSM181A217B30
11.5	12.6	13.6	17.1	19.6	-	-	693.6	TCM	BLRCSM196A235B30

	l Voltage	_ 10 to 1							D ()
60 Hz							μF (X1)	Case Code	Reference Number
Q _n (kvar)								
230 V	240 V	250 V	280 V	300 V	400 V	440 V			
230V	240V	250V	280V	300V	400V	440V			
0.30	0.32	0.35	0.44	0.51	0.90	-	15.9	ECM	BLRCSM008A010B40
0.60	0.65	0.70	0.88	1.0	1.8	-	29.9	GCM	BLRCSM015A018B40
1.0	1.1	1.2	1.5	1.7	3.0	-	49.8	GCM	BLRCSM025A030B40
1.2	1.3	1.4	1.8	2.0	3.6	-	59.7	GCM	BLRCSM030A036B40
1.4	1.5	1.6	2.0	2.3	4.2	5.0	69.1	GCM	BLRCSM042A050B44
1.7	1.8	2.0	2.5	2.8	5.0	-	83.6	KCM	BLRCSM042A050B40
1.8	1.9	2.1	2.6	3.0	5.4	-	89.6	KCM	BLRCSM045A054B40
3.0	3.3	3.6	4.5	5.1	9.1	-	151.3	LCM	BLRCSM076A091B40
3.3	3.6	3.9	4.9	5.6	10.0	-	165.2	RCM	BLRCSM083A100B40
6.0	6.5	7.1	8.9	10.2	18.1	-	300.6	RCM	BLRCSM151A181B40
8.5	9.3	10.1	12.6	14.5	25.8	-	427.9	TCM	BLRCSM215A258B40
8.9	9.7	10.5	13.2	15.2	27.0	-	447.9	TCM	BLRCSM225A270B40
9.2	10.1	10.9	13.7	15.7	27.9	-	463.8	TCM	BLRCSM233A280B40
10.2	11.1	12.1	15.2	17.4	30.9	-	513.5	VCM	BLRCSM258A310B40
11.1	12.1	13.1	16.4	18.9	33.6	-	557.3	VCM	BLRCSM280A336B40
12.0	13.0	14.2	17.8	20.4	36.2	-	601.1	VCM	BLRCSM302A362B40
12.8	13.9	15.1	18.9	21.7	-	-	640.5	TCM	BLRCSM181A217B30
13.8	15.1	16.4	20.5	23.6	-	-	693.6	TCM	BLRCSM196A235B30

Rated	Rated Voltage 240/260 V												
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number			
Q _N (kvar)			I _N (A)	Q _N (kvar)	Q _N (kvar)								
230 V	240 V	260 V	at 260 V	230 V	240 V	260 V	at 260 V						
2.5	2.7	3.2	7.1	3.0	3.3	3.8	8.5	46.0	HC	BLRCS027A033B24			
5.0	5.4	6.4	14.2	6.0	6.5	7.7	17.0	92.1	MC	BLRCS054A065B24			
5.8	6.3	7.4	16.4	6.9	7.5	8.9	19.7	116.0	NC	BLRCS063A075B24			
7.6	8.3	9.6	21.3	9.1	10.0	11.5	25.5	138.1	NC	BLRCS083A100B24			
10.0	10.9	12.8	28.4	12.0	13.0	15.3	34.1	152.8	SC	BLRCS109A130B24			

50 Hz				60 Hz				μF (X3)	Case Code	Reference Number
$Q_N(kvar)$ $I_N(A)$		Q_N (kvar) I_N (A)								
380 V	400 V	415 V	at 400 V	380 V	400 V	415 V	at 400 V			
0.9	1.0	1.1	1.4	1.1	1.2	1.3	1.7	6.6	EC	BLRCS010A012B40
1.5	1.7	1.8	2.5	1.8	2.0	2.2	2.9	11.3	DC	BLRCS017A020B40
1.8	2.0	2.2	2.9	2.2	2.4	2.6	3.5	13.3	DC	BLRCS020A024B40
2.3	2.5	2.7	3.6	2.7	3.0	3.2	4.3	16.6	DC	BLRCS025A030B40
2.7	3.0	3.2	4.3	3.2	3.6	3.9	5.2	19.9	DC	BLRCS030A036B40
3.8	4.2	4.5	6.1	4.5	5.0	5.4	7.3	27.8	HC	BLRCS042A050B40
4.5	5.0	5.4	7.2	5.4	6.0	6.5	8.7	33.1	HC	BLRCS050A060B40
5.7	6.3	6.8	9.1	6.8	7.5	8.1	10.9	41.8	HC	BLRCS063A075B40
6.8	7.5	8.1	10.8	8.1	9.0	9.7	13.0	49.7	HC	BLRCS075A090B40
7.5	8.3	8.9	12.0	9.0	10.0	10.7	14.4	55.0	LC	BLRCS083A100B40
9.4	10.4	11.2	15.0	11.3	12.5	13.4	18.0	68.9	MC	BLRCS104A125B40
11.3	12.5	13.5	18.0	13.5	15.0	16.1	21.7	82.9	NC	BLRCS125A150B40
13.5	15.0	16.1	21.7	16.2	18.0	19.4	26.0	99.4	NC	BLRCS150A180B40
15.1	16.7	18.0	24.1	18.1	20.0	21.6	28.9	110.7	SC	BLRCS167A200B40
18.1	20.0	21.5	28.9	21.7	24.0	25.8	34.6	132.6	SC	BLRCS200A240B40
18.8	20.8	22.4	30.0	22.5	25.0	26.9	36.0	137.9	sc	BLRCS208A250B40
20.0	22.2	23.9	32.0	24.0	26.6	28.7	38.4	147.0	SC	BLRCS222A266B40
22.6	25.0	26.9	36.1	27.1	30.0	32.3	43.3	165.7	SC	BLRCS250A300B40
25.0	27.7	29.8	40.0	30.0	33.2	35.8	48.0	184.0	VC	BLRCS277A332B40

EasyLogic[™] PFC SD Can Three Phase

Rated	Voltage	440 V								
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number
$Q_N \text{ (kvar)}$ $I_N \text{ (A)}$		Q _N (kvar)			I _N (A)					
400 V	415 V	440 V	at 440 V	400 V	415 V	440 V	at 440 V			
2.5	2.7	3.0	3.9	3.0	3.2	3.6	4.7	16.4	DC	BLRCS030A036B44
4.1	4.4	5.0	6.6	5.0	5.3	6.0	7.9	27.4	HC	BLRCS050A060B44
6.2	6.7	7.5	9.8	7.4	8.0	9.0	11.8	41.1	HC	BLRCS075A090B44
8.3	8.9	10.0	13.1	9.9	10.7	12.0	15.7	54.8	LC	BLRCS100A120B44
10.3	11.1	12.5	16.4	12.4	13.3	15.0	19.7	68.5	NC	BLRCS125A150B44
11.8	12.7	14.3	18.8	14.2	15.3	17.2	22.5	78.3	NC	BLRCS143A172B44
12.4	13.3	15.0	19.7	14.9	16.0	18.0	23.6	82.2	NC	BLRCS150A180B44
14.0	15.0	16.9	22.2	16.8	18.0	20.3	26.6	92.6	SC	BLRCS169A203B44
15.0	16.2	18.2	23.9	18.0	19.4	21.8	28.7	99.7	SC	BLRCS182A218B44
16.5	17.8	20.0	26.2	19.8	21.4	24.0	31.5	109.6	SC	BLRCS200A240B44
20.7	22.2	25.0	32.8	24.8	26.7	30.0	39.4	137.0	SC	BLRCS250A300B44
23.6	25.4	28.5	37.4	28.3	30.4	34.2	44.9	156.1	SC	BLRCS285A342B44
25.0	27.0	30.3	39.8	30.0	32.3	36.4	47.7	166.0	SC	BLRCS303A364B44

Rated	Voltage	480 V								
50 Hz			60 Hz				μF (X3)	Case Code	Reference Number	
$Q_N(kvar)$ $I_N(A)$		I _N (A)	$Q_N (kvar)$ $I_N ($							
400 V	415 V	480 V	at 480 V	400 V	440 V	480 V	at 480 V			
2.9	3.1	4.2	5.1	3.5	4.2	5.0	6.1	19.3	HC	BLRCS042A050B48
4.7	5.0	6.7	8.1	5.6	6.8	8.0	9.7	30.8	HC	BLRCS067A080B48
6.1	6.6	8.8	10.6	7.3	8.9	10.6	12.7	40.5	LC	BLRCS088A106B48
7.2	7.8	10.4	12.5	8.7	10.5	12.5	15.0	47.9	MC	BLRCS104A125B48
8.7	9.3	12.5	15.0	10.4	12.6	15.0	18.0	57.5	NC	BLRCS125A150B48
10.8	11.6	15.5	18.6	12.9	15.6	18.6	22.4	71.4	NC	BLRCS155A186B48
11.8	12.7	17.0	20.4	14.2	17.1	20.4	24.5	78.3	NC	BLRCS170A204B48
12.9	13.9	18.6	22.4	15.5	18.8	22.3	26.9	85.6	SC	BLRCS186A223B48
14.4	15.5	20.8	25.0	17.3	21.0	25.0	30.0	95.7	SC	BLRCS208A250B48
17.9	19.3	25.8	31.0	21.5	26.0	31.0	37.2	118.8	SC	BLRCS258A310B48
20.0	21.5	28.8	34.6	24.0	29.0	34.6	41.6	132.6	VC	BLRCS288A346B48
21.9	23.5	31.5	37.9	26.3	31.8	37.8	45.5	145.0	VC	BLRCS315A378B48
23.5	25.3	33.9	40.8	28.3	34.2	40.7	48.9	156.1	XC	BLRCS339A407B48

Rated	Rated Voltage 525 V												
50 Hz			60 Hz				μF (X3)	Case Code	Reference Number				
$Q_N (kvar)$ $I_N (A)$ Q_N				Q _N (kvar)			I _N (A)						
415 V	480 V	525 V	at 525 V	400 V	480 V	525 V	at 525 V						
3.1	4.2	5.0	5.5	3.5	5.0	6.0	6.6	19.2	HC	BLRCS050A060B52			
6.6	8.9	10.6	11.7	7.4	10.6	12.7	14.0	40.8	MC	BLRCS106A127B52			
7.8	10.4	12.5	13.7	8.7	12.5	15.0	16.5	48.1	NC	BLRCS125A150B52			
9.6	12.9	15.4	16.9	10.7	15.4	18.5	20.3	59.3	NC	BLRCS154A185B52			
12.5	16.7	20.0	22.0	13.9	20.1	24.0	26.4	77.0	SC	BLRCS200A240B52			
15.6	20.9	25.0	27.5	17.4	25.1	30.0	33.0	96.2	SC	BLRCS250A300B52			

EasyLogic™ PFC SD Can

harmonic applications Three Phase Applications

EasyLogic[™]SD Can capacitors are designed to work in slightly polluted networks with detuned reactors. 480 and 525V range of EasyLogic™SD Can capacitor is designed to work with detuned reactors in 400V.

Detuned reactor

EasyLogic™

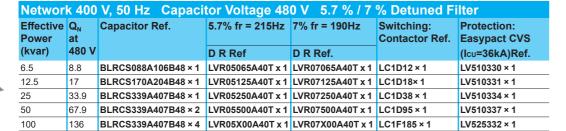
Operating conditions

- For slightly polluted networks.
- Slight voltage disturbances.
- Need of switching frequency up to 5 000 /year.

Rated voltage

In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (U_s). Then, capacitors must be designed to withstand higher voltages.

Depending on the selected tuning frequency, part of the harmonic currents are absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.


The rated voltage of EasyLogic[™] capacitors is given in the table below, for different values of network service voltage and relative impedance.

Capacitor Rated Volta	ge U _N (V)	Network Service Voltage U _s (V)				
		50 Hz	60 Hz			
		400	400			
Relative Impedance (%)	5.7 7	480	480			
	14	480	480			

In the following pages, the effective power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

EasyLogic[™] PFC SD Can + Detuned Reactor + Contactor + MCCB

Network 400 V, 50 Hz Capacitor Voltage 480 V 14 % Detuned Filter								
Effective Q _N Power at	at	Capacitor Ref.		Switching: Contactor Ref.	Protection: Easypact CVS			
(kvar)	480 V		D R Ref		(Icu=36kA)Ref.			
6.5	8.8	BLRCS088A106B48 × 1	LVR14065A40T x 1	LC1D12 × 1	LV510330 × 1			
12.5	15.5	BLRCS155A186B48 × 1	LVR14125A40T x 1	LC1D18×1	LV510331 × 1			
25	31.5	BLRCS315A378B48 × 1	LVR14250A40T x 1	LC1D38 × 1	LV510334 × 1			
50	63	BLRCS315A378B48 × 2	LVR14500A40T x 1	LC1D95 × 1	LV510337 × 1			
100	126	BLRCS315A378B48 × 4	LVR14X00A40T x 1	LC1F185 × 1	LV525332 × 1			

Network 400 V, 60 Hz Capacitor Voltage 480 V 5.7 % / 7 % Detuned Filter								
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 250Hz	7% fr = 230Hz	Switching: Contactor Ref.	Protection: Easypact CVS		
(kvar)	480 V		D R Ref	D R Ref		(Icu=36kA)Ref.		
12.5	17.3	BLRCS144A173B48 × 1	LVR05125B40T × 1	LVR07125B40T × 1	LC1D18× 1	LV510331 × 1		
25	34.6	BLRCS288A346B48 × 1	LVR05250B40T × 1	LVR07250B40T × 1	LC1D38 × 1	LV510334 × 1		
50	69.2	BLRCS288A346B48 × 2	LVR05500B40T × 1	LVR07500B40T × 1	LC1D95 × 1	LV510337 × 1		
100	138.4	BLRCS288A346B48 × 4	LVR05X00B40T × 1	LVR07X00B40T × 1	LC1F185 × 1	LV525332 × 1		

t	_	•	

Network 400 V, 60 Hz Capacitor Voltage 480 V 14 % Detuned Filter									
Effective Power	Q _N at	Capacitor Ref.	14% fr = 160Hz	Switching: Contactor Ref.	Protection: Easypact CVS				
(kvar)	480 V		D R Ref.		(Icu=36kA)Ref.				
12.5	16.3	BLRCS136A163B48 × 1	LVR14125B40T × 1	LC1D18× 1	LV510331 × 1				
25	31	BLRCS258A310B48 × 1	LVR14250B40T × 1	LC1D38 × 1	LV510334 × 1				
50	62	BLRCS258A310B48 × 2	LVR14500B40T × 1	LC1D95 × 1	LV510337 × 1				
100	124	BLRCS258A310B48 × 4	LVR14X00B40T × 1	LC1F185 × 1	LV525332 × 1				

24 se.com/contact 25

EasyLogic™ PFC HD Can Three Phase

EasyLogic™ PFC HD Can Three Phase

An Easy choice for savings which is optimized to deliver the performance you need. Suitable for operating conditions with a few non-linear loads to deliver safe and reliable performance.

EasyLogic[™] three phase

EasyLogic™ single phase

Operating conditions

- For networks with insignificant non-linear loads: (N₁₁ ≤ 15 %).
- Standard voltage disturbances.
- Standard operating temperature up to 55 °C.
- Normal switching frequency up to 6500 /year.
- Maximum current (including harmonics) is 1.6 x I_N.

TechnologyConstructed internally with single-phase capacitor elements assembled in an optimized design. Each capacitor element is manufactured with metallized polypropylene film.

The active capacitor elements are covered in a specially formulated biodegradable, non-PCB, polyurethane soft resin. This ensures thermal stability and heat removal from inside the

The unique finger proof CLAMPTITE termination is fully integrated with discharge resistors. It allows suitable access to tightening and cable termination without any loose connections.

For Lower ratings, double fast-on terminals with integrated cables are provided for easy and faster connection, reducing the risk of terminal overheating and failure.

Safety

- Pressure-sensitive disconnecter on all the phase.
- Discharge resistors fitted non removable.
- Finger-proof CLAMPTITE terminals to reduce risk of accidental contact and to ensure firm termination (10-25kvar in three phase).
- Stud terminals above than 25kvar for easy terminal connection.

Easy installation & maintenance

- Optimized design for safety, reliability with required performance, Optimized size to ensure easy installation and upto 20% space saving in cubicles.

 New CLAMPTITE terminals for easy of connection that maintains the terminal tightness with
- IP20 protection.
- Non accessaile in-built discharge resistors to ensure safety.
- Single point/Stud for mounting and earthing.
- Simultaneous and safe disconnection of all the phases at end of life in EasyLogic™.
- Stacked design and resin filled technology for better heat dissipation/cooling.

Benefits

- Easy installation
- Easy for reliablity and safe usage.
- Easy for quality assurance.
- Easy choice for building your solutions with other Schneider Electric components.
- Easy choice for savings.

Technical specifications

General c	haracteristics				
Standards		IEC 60831-1/2			
Voltage range		480V to 525V in Three Phase			
Frequency		50 / 60 Hz			
Power range		7.5 - 45.2 kvar			
Losses (dielectr	ic)	< 0.2 W/kvar			
Losses (total)		< 0.5 W/kvar			
Capacitance tol	erance	-5 %, +10 %			
Voltage test	Between terminals	2.15 x U _N (AC), 10 s			
	Between terminal & container	3 kV (AC), 10 s or 3.66 kV (AC), 2 s			
	Impulse voltage	8 kV			
Discharge resis	tor	Fitted, standard discharge time 60 s			
Working o	conditions				
Ambient temper	ature	-25 / 55 °C (Class D)			
Humidity		95 %			
Altitude		2,000 m above sea level			
Overvoltage		1.1 x U _N 8 h in every 24 h			
Overcurrent		Up to 1.6xI _N			
Peak inrush current		200 x I _N			
Switching operations (max.)		Up to 6,500 switching operations per year			
Mean Life expectancy		Up to 120,000 hrs			
Harmonic conte	nt withstand	N _{LL} ≤ 15 %			
Installatio	n characteristi	cs control of the con			
Mounting position	on	Indoor, upright			
Fastening Earthing		Threaded M12 stud at the bottom			
Terminals		■ CLAMPTITE - terminals with electric shock protection (finger-proof) & double fast-on terminal in lower kvar ■ Stud type terminal: □ Three way stud type terminals for the ratings above 25 kvar in three phase capacitors.			
Safety fea	itures				
Safety		Self-healing + Pressure-sensitive disconnector + Discharge device			
Protection		IP20 (for fast-on and clamptite)			
Construct	tion				
Casing		Extruded Aluminium Can			
Dielectric		Metallized polypropylene film with Zn/Al alloy			
Impregnation		Biodegradable, Non-PCB, poly urethane soft resin			

▲ WARNING

HAZARD OF ELECTRICAL SHOCK

Wait 5 minutes after isolating supply before handling

Failure to follow these instructions can result in injury or equipment damage

26 se.com/contact Life is On | Schneider Electric 27

EasyLogic[™] PFC HD Can Three Phase

50 Hz			60 Hz	60 Hz				Case Code	Reference Number	
Q _N (kvar)			I _N (A)	Q _N (kvar)			I _N (A)			
400 V	415 V	480 V	at 480 V	400 V	415 V	480 V	at 480 V			
5.2	5.6	7.5	9	6.3	6.7	9	10.8	34.6	LC	BLRCP075A090B48
8.7	9.3	12.5	15	10.4	11.2	15	18	57.6	NC	BLRCP125A150B48
9.4	10.2	13.6	16.4	11.3	12.2	16.3	19.6	62.7	NC	BLRCP136A163B48
10.8	11.6	15.5	18.6	12.9	13.9	18.6	22.4	71.4	SC	BLRCP155A186B48
11.8	12.7	17	20.4	14.2	15.2	20.4	24.5	78.3	SC	BLRCP170A204B48
14.4	15.5	20.8	25	17.4	18.7	25	30.1	95.8	SC	BLRCP208A250B48
17.4	18.7	25	30.1	20.8	22.4	30	36.1	115.2	XC	BLRCP250A300B48
20	21.5	28.8	34.6	24	25.9	34.6	41.6	132.7	XC	BLRCP288A346B48
21.9	23.5	31.5	37.9	26.3	28.3	37.8	45.5	145.1	XC	BLRCP315A378B48
23.1	24.9	33.3	40.1	27.8	29.9	40	48.1	153.4	XC	BLRCP333A400B48

50 Hz			60 Hz	60 Hz				Case Code	Reference Number	
Q _N (kvar)		I _N (A)	Q _N (kvar)			I _N (A)			
415 V	480 V	525 V	at 525 V	415 V	480 V	525 V	at 525 V			
5.2	6.9	8.3	9.1	6.2	8.4	10	11	32	LC	BLRCP083A100B52
6.6	8.9	10.6	11.7	7.9	10.6	12.7	14	40.8	NC	BLRCP106A127B52
7.8	10.4	12.5	13.7	9.4	12.5	15	16.5	48.1	NC	BLRCP125A150B52
10.7	14.4	17.2	18.9	12.9	17.3	20.6	22.7	66.2	SC	BLRCP172A206B52
13	17.4	20.8	22.9	15.6	20.9	25	27.5	80.1	SC	BLRCP208A250B52
15.6	20.9	25	27.5	18.7	25.1	30	33	96.3	SC	BLRCP250A300B52
19.3	25.8	30.9	34	23.2	31	37.1	40.8	119	XC	BLRCP309A371B52
21.5	28.8	34.4	37.8	25.8	34.5	41.3	45.4	132.5	XC	BLRCP344A413B52
23.6	31.5	37.7	41.5	28.3	37.8	45.2	49.8	145.2	XC	BLRCP377A452B52

EasyLogic[™] PFC HD Can harmonic applications Three Phase Applications

An Easy choice for savings which is optimized to deliver the performance you need. Suitable for operating conditions with a few non-linear loads to deliver safe and reliable performance.

Detuned reactor

EasyLogic™

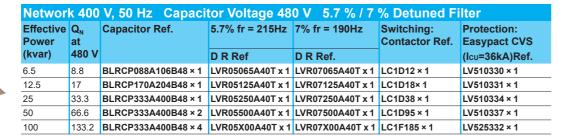
Operating conditions

- For slightly polluted networks.
- Slight voltage disturbances.
- Need of switching frequency up to 5 000 /year.

Rated voltage

In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (U_s) . Then, capacitors must be designed to withstand higher voltages.

Depending on the selected tuning frequency, part of the harmonic currents are absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.

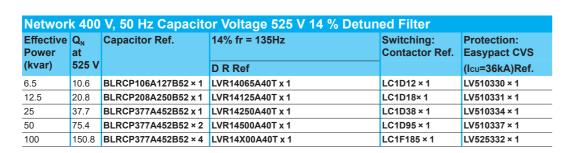

The rated voltage of EasyLogic[™] capacitors is given in the table below, for different values of network service voltage and relative impedance.

Capacitor Rated Volta	age U _N (V)	Network Service Voltage U _s (V)			
		50 Hz	60 Hz		
		400	400		
Relative Impedance (%)	5.7 7	480	480		
	14	480	480		

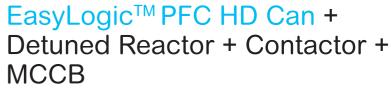
In the following pages, the effective power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

28 se.com/contact 29

EasyLogic™ PFC HD Can + Detuned Reactor + Contactor + **MCCB**



Networ	Network 400 V, 50 Hz Capacitor Voltage 480 V 14 % Detuned Filter								
Effective Power	at		14% fr = 135Hz	Switching: Contactor Ref.	Protection: Easypact CVS				
(kvar)	480 V		D R Ref		(Icu=36kA)Ref.				
6.5	8.8	BLRCP088A106B48 × 1	LVR14065A40T x 1	LC1D12 × 1	LV510330 × 1				
12.5	15.5	BLRCP155A186B48 × 1	LVR14125A40T x 1	LC1D18×1	LV510331 × 1				
25	31.5	BLRCP315A378B48 × 1	LVR14250A40T x 1	LC1D38 × 1	LV510334 × 1				
50	63	BLRCP315A378B48 × 2	LVR14500A40T x 1	LC1D95 × 1	LV510337 × 1				
100	126	BLRCP315A378B48 × 4	LVR14X00A40T x 1	LC1F185 × 1	LV525332 × 1				


Network 400 V, 50 Hz Capacitor Voltage 525 V 5.7 % / 7 % Detuned Filter									
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Easypact CVS			
(kvar)	525V		D R Ref	D R Ref.		(Icu=36kA)Ref.			
6.5	10.6	BLRCP106A127B52 × 1	LVR05065A40T x 1	LVR07065A40T x 1	LC1D12 × 1	LV510330 × 1			
12.5	20.8	BLRCP208A250B52 × 1	LVR05125A40T x 1	LVR07125A40T x 1	LC1D18×1	LV510331 × 1			
25	41.6	BLRCP208A250B52 × 2	LVR05250A40T x 1	LVR07250A40T x 1	LC1D38 × 1	LV510334 × 1			
50	83.2	BLRCP208A250B52 x 4	LVR05500A40T x 1	LVR07500A40T x 1	LC1D95 × 1	LV510337 × 1			
100	166.4	BLRCP208A250B52 x 8	LVR05X00A40T x 1	LVR07X00A40T x 1	LC1F185 × 1	LV525332 × 1			

Low Voltage Capacitors

Network 400 V, 60 Hz Capacitor Voltage 480 V 5.7 % / 7 % Detuned Filter									
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Easypact CVS			
(kvar)	480V		D R Ref	D R Ref.		(Icu=36kA)Ref.			
12.5	16.3	BLRCP136A163B48 × 1	LVR05125B40T × 1	LVR07125B40T × 1	LC1D18×1	LV510331 × 1			
25	34.6	BLRCP288A346B48 × 1	LVR05250B40T × 1	LVR07250B40T × 1	LC1D38 × 1	LV510334 × 1			
50	69.2	BLRCP288A346B48 × 2	LVR05500B40T × 1	LVR07500B40T × 1	LC1D95 × 1	LV510337 × 1			
100	138.4	BLRCP288A346B48 × 4	LVR05X00B40T ×1	LVR07X00B40T × 1	LC1F185 × 1	LV525332 × 1			

Effective Power	at	Capacitor Ref.	14% fr = 135Hz	Switching: Contactor Ref.	Protection: Easypact CVS
(kvar)	480 V		D R Ref		(Icu=36kA)Ref.
12.5	16.3	BLRCP136A163B48 × 1	LVR14125B40T × 1	LC1D18×1	LV510331 × 1
25	30	BLRCP250A300B48 × 1	LVR14250B40T × 1	LC1D38 × 1	LV510334 × 1
50	60	BLRCP250A300B48 × 2	LVR14500B40T × 1	LC1D95 × 1	LV510337 × 1
100	120	BLRCP250A300B48 × 4	LVR14X00B40T × 1	LC1F185 × 1	LV525332 × 1

30 se.com/contact Life is On | Schneider Electric 31

PowerLogic[™] PFC Capacitor 3 Phase Capacitors

PowerLogic[™] PFC Capacitor 3 Phase Capacitors

A safe, reliable, high-performance and flexible solution for power factor correction in stringent operating conditions to maximise your savings

PowerLogic™ PFC Capacitors

Operating conditions

- For networks with insignificant non-linear loads: (N₁₁ < 20 %).
- Significant voltage disturbances.
- Standard operating temperature up to 55 °C.
- Normal switching frequency up to 7500 /year.
- Over current handling(including harmonics) up to 1.8 x I_N.

TechnologyPowerLogic™ PFC Capacitors are constructed internally with single-phase capacitor elements. Each capacitor element is manufactured with metallized polypropylene film as the dielectric, having features such as heavy edge, slope metallization and wave-cut profile to ensure increased current handling capacity and reduced temperature rise.

Sticky resin which give good thermal conductivity and mechanical stability allows the capacitor

Stud type terminals are designed for handling higher currents for capacitors more than 30kvar.

The unique finger-proof CLAMPTITE termination is fully integrated with discharge resistors, allowing suitable access for tightening and ensuring cable termination without any loose connections.

For lower ratings, double fast-on terminals with wires are provided.

Safety

- Pressure-sensitive disconnector on all three phases independent of mechanical assembly.
- Tamper resistant non-assessible in-built discharge resistors.
- Unique Finger-proof New CLAMPTITE terminals to reduce risk of accidental contact and to ensure firm termination and maintained tightness.
- Special film resistivity and metallization profile for higher thermal efficiency, lower temperature rise and enhanced life expectancy.

High performance, Reliability and Flexibility with PowerLogic™ PFC Capacitor

- Power ratings up to 57.1 kvar in single can and compactness across the range to reduce your cubicle space up to 40%.
- Build your type tested Schneider electric solution with PowerLogic[™] PFC Capacitor Prisma, Blokset and Okken.
- In-built user assistance and warnings on the product for a delight user experience.
- Flexibility in Vertical and horizontal mounting.
- 3 Phase disconnection of Pressure sensitive disconnector at the end of life which is independent of mechanical assembly for safety and reliability.
- Use of special conductors in stacked design impregnated in resin to ensure better cooling
- Metallized polypropylene with wave cut and heavy edge technology to handle over current conditions in harsh environments. ■ Specially formulated sticky resin to increase the mechanical stability of capacitor elements
- for higher rating capacitors to ensure better cooling and extended life
- Designed for high performance in harsh environment to ensure 30% extended life compared to standard capacitors.

Benefits

- Saving in panel space due to compact design and higher kvar range.
- High Performance & Long life.
- High over current handling.
- Unique disconnection system and in-built discharge device.
- Flexibility in installation upright and horizontal.

Technical specifications

General c	haracteristics	
Standards		IEC 60831-1/2
Voltage range		230 to 830 V
Frequency		50 / 60 Hz
Power range		1 to 57.1 kvar
Losses (dielectr	ic)	< 0.2W/kvar
Losses (total)		< 0.5 W/kvar
Capacitance tol	erance	-5%, +10%
Voltage test	Between terminals	2.15 x U _N (AC), 10 s
	Between terminal & container	≤ 525 V: 3 kV (AC), 10 s or 3.66 kV (AC), 2 s > 525 V: 3.66 kV (AC), 10 s or 4.4 kV (AC), 2 s
	Impulse voltage	≤ 690 V: 8 kV > 690 V: 12 kV
Discharge resis	tor	Fitted, standard discharge time 60 s
Working o	conditions	
Ambient temper		-25 / 55 °C (Class D)
Humidity		95 %
Altitude		2,000 m above sea level
Overvoltage		1.1 x U _N 8 h in every 24 h
Overcurrent		Up to 1.8xI _N
Peak inrush cur	rent	250 x I _N
Switching opera	itions (max.)	Up to 7,000 switching operations per year
Mean Life expe	ctancy	Up to 130,000 hrs
Harmonic conte	nt withstand	N _{LL} ≤ 20 %
Installatio	n characteristi	cs
Mounting position	on	Indoor, upright & horizontal
Fastening		Threaded M12 stud at the bottom
Earthing		
Terminals		CLAMPTITE - three-way terminal with electric shock protection (finger-proof) and, double in lower kvar and stud type for higher power ratings
Safety fea	tures	
Safety		Self-healing + Pressure-sensitive disconnector + Discharge device
Protection		IP20 (for fast-on and clamptite terminal)
	i	
Construct	ion	
Construct Casing	ion	Extruded Aluminium Can
	ion	Extruded Aluminium Can Metallized polypropylene film with Zn/Al alloy. Special resistivity & profile, special edge (wave-cut)

▲ WARNING

HAZARD OF ELECTRICAL SHOCK

Wait 5 minutes after isolating supply before handling

Failure to follow these instructions can result in injury or equipment damage

32 se.com/contact Life is On | Schneider Electric 33

Rated	Rated Voltage 240/260 V													
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number				
Q _N (kvar)			I _N (A)	Q _N (kvar)			I _N (A)							
230 V	240 V	260 V	at 260 V	230 V	240 V	260 V	at 260 V							
2.5	2.7	3.2	7.0	3.0	3.3	3.8	8.4	49.7	HC	BLRCH027A033B24				
3.9	4.2	4.9	10.9	4.6	5.0	5.9	13.1	77.3	HC	BLRCH042A050B24				
5.0	5.4	6.3	14.1	6.0	6.5	7.6	16.9	99.4	MC	BLRCH054A065B24				
5.8	6.3	7.4	16.4	6.9	7.5	8.8	19.5	116.0	RC	BLRCH063A075B24				
7.6	8.3	9.7	21.6	9.2	10.0	11.7	26.1	152.4	RC	BLRCH083A100B24				
10.0	10.9	12.8	28.4	12.0	13.0	15.3	34.1	200.5	TC	BLRCH109A130B24				
10.7	11.7	13.7	30.4	12.9	14.0	16.4	36.5	214.8	TC	BLRCH117A140B24				
12.0	13.1	15.4	34.1	14.4	15.7	18.4	40.9	240.9	TC	BLRCH131A157B24				

Rated	Voltage	380/400/	415 V							
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number
Q _N (kvar)			I _N (A)	Q _N (kvar)			I _N (A)			
380 V	400 V	415 V	at 400 V	380 V	400 V	415 V	at 400 V			
2.3	2.5	2.7	3.6	2.7	3.0	3.2	4.3	16.6	DC	BLRCH025A030B40
2.7	3.0	3.2	4.3	3.2	3.6	3.9	5.2	19.9	DC	BLRCH030A036B40
4.5	5.0	5.4	7.2	5.4	6.0	6.5	8.7	33.1	HC	BLRCH050A060B40
5.7	6.3	6.8	9.1	6.8	7.5	8.1	10.8	41.8	HC	BLRCH063A075B40
6.8	7.5	8.1	10.8	8.1	9.0	9.7	13.0	49.7	HC	BLRCH075A090B40
7.5	8.3	8.9	12.0	9.0	10.0	10.7	14.4	55.0	LC	BLRCH083A100B40
9.4	10.4	11.2	15.0	11.3	12.5	13.4	18.0	68.9	MC	BLRCH104A125B40
11.3	12.5	13.5	18.0	13.5	15.0	16.1	21.7	82.9	RC	BLRCH125A150B40
13.5	15.0	16.1	21.7	16.2	18.0	19.4	26.0	99.4	RC	BLRCH150A180B40
15.1	16.7	18.0	24.1	18.1	20.0	21.6	28.9	110.7	TC	BLRCH167A200B40
18.1	20.0	21.5	28.9	21.7	24.0	25.8	34.6	132.6	TC	BLRCH200A240B40
18.8	20.8	22.4	30.0	22.5	25.0	26.9	36.0	137.9	TC	BLRCH208A250B40
22.6	25.0	26.9	36.1	27.1	30.0	32.3	43.3	165.7	TC	BLRCH250A300B40
27.1	30.0	32.3	43.3	32.5	36.0	38.8	52.0	198.9	VC	BLRCH300A360B40
30.1	33.3	35.8	48.1	36.1	40.0	43.0	57.7	220.7	VC	BLRCH333A400B40
36.1	40.0	43.1	57.7	43.3	48.0	51.7	69.3	265.2	YC	BLRCH400A480B40
37.6	41.7	44.9	60.2	45.2	50.0	53.9	72.2	276.4	YC	BLRCH417A500B40
45.1	50.0	53.8	72.2					331.4	YC	BLRCH500A000B40

Rated	Voltage	440 V								
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number
Q _N (kvar)			I _N (A)	Q _N (kvar)			I _N (A)			
400 V	415 V	440 V	at 440 V	400 V	415 V	440 V	at 440 V			
3.4	3.7	4.2	5.5	4.1	4.4	5.0	6.6	23.0	HC	BLRCH042A050B44
4.1	4.4	5.0	6.6	5.0	5.3	6.0	7.9	27.4	HC	BLRCH050A060B44
6.2	6.7	7.5	9.8	7.4	8.0	9.0	11.8	41.1	HC	BLRCH075A090B44
6.9	7.4	8.3	10.9	8.3	8.9	10.0	13.1	45.5	LC	BLRCH083A100B44
8.3	8.9	10.0	13.1	9.9	10.7	12.0	15.7	54.8	MC	BLRCH100A120B44
10.3	11.1	12.5	16.4	12.4	13.3	15.0	19.7	68.5	RC	BLRCH125A150B44
11.8	12.7	14.3	18.8	14.2	15.3	17.2	22.5	78.3	RC	BLRCH143A172B44
12.4	13.3	15.0	19.7	14.9	16.0	18.0	23.6	82.2	RC	BLRCH150A180B44
14.0	15.0	16.9	22.2	16.8	18.0	20.0	26.6	92.6	TC	BLRCH169A203B44
15.0	16.2	18.2	23.9	18.0	19.4	21.8	28.7	99.7	TC	BLRCH182A218B44
16.5	17.8	20.0	26.2	19.8	21.4	24.0	31.5	109.6	TC	BLRCH200A240B44
17.2	18.5	20.8	27.3	20.7	22.2	25.0	32.8	114.1	TC	BLRCH208A250B44
20.7	22.2	25.0	32.8	24.8	26.7	30.0	39.4	137.0	TC	BLRCH250A300B44
23.6	25.4	28.5	37.4	28.3	30.4	34.2	44.9	156.1	VC	BLRCH285A342B44
25.0	27.0	30.3	39.8					166.0	VC	BLRCH303A000B44
26.0	28.0	31.5	41.3	31.2	33.6	37.8	49.6	172.6	VC	BLRCH315A378B44
27.7	29.8	33.5	44.0	33.2	35.8	40.0	52.7	183.5	VC	BLRCH335A401B44
33.1	35.6	40.0	52.5	39.7	42.7	48.0	63.0	219.1	XC	BLRCH400A480B44
34.5	37.1	41.7	54.7	41.4	44.5	50.0	65.6	228.7	YC	BLRCH417A500B44
41.3	44.5	50.0	65.6	49.6	53.4			273.9	YC	BLRCH500A000B44
47.2	50.8	57.1	74.9	56.6	61.0			312.8	YC	BLRCH571A000B44

50 Hz				60 Hz				μF (X3)	Case Code	Reference Number
Q _N (kvar)		I _N (A)	Q _N (kvar)			I _N (A)			
400 V	415 V	480 V	at 480 V	400 V	440 V	480 V	at 480 V			
2.9	3.1	4.2	5.1	3.5	4.2	5.0	6.1	19.3	DC	BLRCH042A050B48
3.5	3.7	5.0	6.0	4.2	5.0	6.0	7.2	23.0	HC	BLRCH050A060B48
5.2	5.6	7.5	9.0	6.3	7.6	9.0	10.8	34.5	HC	BLRCH075A090B48
5.8	6.2	8.3	10.0	6.9	8.4	10.0	12.0	38.2	LC	BLRCH083A100B48
6.1	6.6	8.8	10.6	7.3	8.9	10.6	12.7	40.5	LC	BLRCH088A106B48
7.2	7.8	10.4	12.5	8.7	10.5	12.5	15.0	47.9	MC	BLRCH104A125B48
8.7	9.3	12.5	15.0	10.4	12.6	15.0	18.0	57.5	RC	BLRCH125A150B48
9.4	10.2	13.6	16.4	11.3	13.7	16.3	19.6	62.6	RC	BLRCH136A163B48
10.0	10.8	14.4	17.3	12.0	14.5	17.3	20.8	66.3	RC	BLRCH144A173B48
10.8	11.6	15.5	18.6	12.9	15.6	18.6	22.4	71.4	RC	BLRCH155A186B48
11.8	12.7	17.0	20.4	14.2	17.1	20.0	24.5	78.3	RC	BLRCH170A204B48
12.5	13.5	18.0	21.7	15.0	18.2	21.6	26.0	82.9	TC	BLRCH180A216B48
14.4	15.5	20.8	25.0	17.3	21.0	25.0	30.0	95.7	TC	BLRCH208A250B48
15.8	17.0	22.7	27.3	18.9	22.9	27.2	32.8	104.5	TC	BLRCH227A272B48
17.4	18.7	25.0	30.1	20.8	25.2	30.0	43.3	115.2	TC	BLRCH250A300B48
17.9	19.3	25.8	31.0	21.5	26.0	31.0	37.2	118.8	TC	BLRCH258A310B48
20.0	21.5	28.8	34.6	24.0	29.0	34.6	41.6	132.6	VC	BLRCH288A346B48
21.9	23.5	31.5	37.9	26.3	31.8	37.8	45.5	145.0	VC	BLRCH315A378B48
23.1	24.9	33.3	40.1	27.8	33.6	40.0	57.7	153.4	XC	BLRCH333A400B48
23.5	25.3	33.9	40.8	28.3	34.2	40.7	48.9	156.1	XC	BLRCH339A407B48
28.9	31.2	41.7	50.1	34.7	42.0	50.0	72.2	192.1	YC	BLRCH417A500B48

Rated	Rated Voltage 525 V													
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number				
Q _N (kvar)			I _N (A)	Q _N (kvar)			I _N (A)							
415 V	480 V	525 V	at 525 V	400 V	480 V	525 V	at 525 V							
2.6	3.5	4.2	4.6	2.9	4.2	5.0	5.5	16.2	HC	BLRCH042A050B52				
3.1	4.2	5.0	5.5	3.5	5.0	6.0	6.6	19.2	HC	BLRCH050A060B52				
5.2	7.0	8.3	9.2	5.8	8.4	10.0	11.0	32.0	LC	BLRCH083A100B52				
6.6	8.9	10.6	11.7	7.4	10.6	12.7	14.0	40.8	MC	BLRCH106A127B52				
7.8	10.4	12.5	13.7	8.7	12.5	15.0	16.5	48.1	RC	BLRCH125A150B52				
10.4	13.9	16.7	18.3	11.6	16.7	20.0	22.0	64.3	RC	BLRCH167A200B52				
10.7	14.4	17.2	18.9	12.0	17.3	20.6	22.7	66.2	RC	BLRCH172A206B52				
11.6	15.5	18.5	20.3	12.9	18.6	22.2	24.4	71.2	TC	BLRCH185A222B52				
12.5	16.7	20.0	22.0	13.9	20.1	24.0	26.4	77.0	TC	BLRCH200A240B52				
13.0	17.4	20.8	22.9	14.5	20.9	25.0	27.5	80.1	TC	BLRCH208A250B52				
15.6	20.9	25.0	27.5	17.4	25.1	30.0	33.0	96.2	TC	BLRCH250A300B52				
19.3	25.8	30.9	34.0	21.5	31.0	37.1	40.8	118.9	VC	BLRCH309A371B52				
20.8	27.9	33.3	36.7	23.2	33.4	40.0	44.0	128.3	VC	BLRCH333A400B52				
21.5	28.8	34.4	37.8	24.0	34.5	41.3	45.4	132.4	VC	BLRCH344A413B52				
23.6	31.5	37.7	41.5	26.3	37.8	45.2	49.8	145.1	VC	BLRCH377A452B52				
25.0	33.4	40.0	44.0	27.9	40.1	48.0	52.8	153.9	XC	BLRCH400A480B52				
26.1	34.8	41.7	45.8	29.0	41.8	50.0	50.7	160.6	YC	BLRCH417A500B52				

Rated	Rated Voltage 575 V													
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number				
Q _N (kvar) I _N (A)				Q _N (kvar)			I _N (A)							
480 V	550 V	575 V	at 575 V	480 V	550 V	575 V	at 575 V							
8.4	11.0	12.0	12.0	9.3	13.2	14.4	14.5	38.5	RC	BLRCH120A144B57				
10.5	13.7	15.0	15.1	11.7	11.7 16.5 18.0			48.1	TC	BLRCH150A180B57				
20.3	26.7	29.2	29.3	22.7	32.0	35.0	35.1	93.6	VC	BLRCH292A350B57				

PowerLogic[™] PFC Capacitor 3 Phase Capacitors

Rated Voltage 600 V													
50 Hz				60 Hz				μF (X3)	Case Code	Reference Number			
$Q_N (kvar)$ $I_N (A)$			Q _N (kvar)			I _N (A)							
480 V	550 V	600 V	at 600 V	480 V	550 V	600 V	at 600 V						
2.7	3.5	4.2	4.6	3.2	4.2	5.0	4.8	12.4	LC	BLRCH042A050B60			
8.0	10.5	12.5	11.7	9.6	12.6	15.0	14.4	36.8	TC	BLRCH125A150B60			
13.3	17.5	20.8	14.8	16.0	21.0	25.0	24.0	61.3	VC	BLRCH208A250B60			

50 Hz	50 Hz							μF (X3)	Case Code	Reference Number
Q _n (kvar)			I _N (A)	Q _N (kvar)			I _N (A)			
480 V	600 V	690 V	at 690 V	480 V	600 V	690 V	at 690 V			
5.4	8.4	11.1	9.3	6.4	10.1	13.3	11.1	24.7	RC	BLRCH111A133B69
6.0	9.5	12.5	10.5	7.3	11.3	15.0	12.6	27.8	RC	BLRCH125A150B69
6.7	10.4	13.8	11.5	8.0	12.5	16.5	13.8	30.6	TC	BLRCH138A165B69
7.3	11.3	15.0	12.6	8.7	13.6	18.0	15.1	33.4	TC	BLRCH150A180B69
9.7	15.1	20.0	16.7	11.6	18.1	24.0	20.1	44.6	TC	BLRCH200A240B69
12.1	18.9	25.0	20.9	14.5	22.7	30.0	25.1	55.7	VC	BLRCH250A300B69
13.3	20.9	27.6	23.1	16.0	25.0	33.1	27.7	61.4	VC	BLRCH276A331B69
14.5	22.7	30.0	25.1	17.4	27.2	36.0	30.1	66.8	VC	BLRCH300A360B69

Rated Voltage 830 V													
50 Hz 60 Hz									Case Code	Reference Number			
Q _N (kvar)		$I_N(A)$ $Q_N(kvar)$				I _N (A)							
600 V	690 V	830 V	at 830 V	600 V	690 V	830 V	at 830 V						
8.9	11.8	17.1	11.9	10.7	14.2	20.5	14.3	79.2	VC	BLRCH171A205B83			

PowerLogic[™] PFC Capacitor harmonic applications 3 Phase Applications

PowerLogic[™] PFC Capacitors are designed for applications where higher number of non-linear loads are present. Higher current carrying capacity in PowerLogic[™] PFC Capacitor allows the operations in stringent conditions.

Detuned reactor

PowerLogic™

Operating conditions

- For networks with a large number of non-linear loads (N_{LL} < 50 %).
- Significant voltage disturbances.
- Significant switching frequency up to 7 000 /year.

Rated voltage

In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (U_s). Then, capacitors must be designed to withstand higher voltages.

Depending on the selected tuning frequency, part of the harmonic currents are absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.

The rated voltage of PowerLogic[™] PFC Capacitor capacitors is given in the table below, for different values of network service voltage and relative impedance.

Capacitor Rated Volta	ge U _N (V)	Network Service Voltage U _s (V)							
		50 Hz		60 Hz					
		400	690	400	480	600			
Relative Impedance	5.7	400	000	400		000			
(%)	7	480	830	480	575	690			
	14	480	-	480	-	-			

In the following pages, the effective power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

PowerLogic[™] PFC Capacitor + Detuned Reactor + Contactor + MCCB

Networ	Network 400 V, 50 Hz Capacitor Voltage 480 V 5.7 % / 7 % Detuned Filter					ilter
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	480 V		D R Ref.	D R Ref.		36 kA at 380/415 V
6.5	8.8	BLRCH088A106B48 × 1	LVR05065A40T x 1	LVR07065A40T x 1	LC1D12 × 1	LV429637 × 1
12.5	17	BLRCH170A204B48 × 1	LVR05125A40T x 1	LVR07125A40T x 1	LC1D18×1	LV429636 × 1
25	33.9	BLRCH339A407B48 × 1	LVR05250A40T x 1	LVR07250A40T x 1	LC1D38 × 1	LV429633 × 1
50	67.9	BLRCH339A407B48 × 2	LVR05500A40T x 1	LVR07500A40T x 1	LC1D95 × 1	LV429630 × 1
100	136	BLRCH339A407B48 × 4	LVR05X00A40T x 1	LVR07X00A40T x 1	LC1F185×1	LV431631 × 1

Effective Power	Q _N at	Capacitor Ref.	14% fr = 135Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	480 V		D R Ref.		36 kA at 380/415 V
6.5	8.8	BLRCH088A106B48 × 1	LVR14065A40T x 1	LC1D12 × 1	LV429637 × 1
12.5	15.5	BLRCH155A186B48 × 1	LVR14125A40T x 1	LC1D18×1	LV429636 × 1
25	31.5	BLRCH315A378B48 × 1	LVR14250A40T x 1	LC1D38 × 1	LV429633 × 1
50	63	BLRCH315A378B48 × 2	LVR14500A40T x 1	LC1D95 × 1	LV429630 × 1
100	126	BLRCH315A378B48 × 4	LVR14X00A40T x 1	LC1F185 × 1	LV431631 × 1

Networ	Network 400 V, 50 Hz Capacitor Voltage 525 V 5.7 % / 7 % Detuned Filter					
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	525 V		D R Ref.	D R Ref.		36 kA at 380/415 V
6.5	10.6	BLRCH106A127B52 × 1	LVR05065A40T x 1	LVR07065A40T x 1	LC1D12 × 1	LV429637 × 1
12.5	20	BLRCH200A240B52 × 1	LVR05125A40T x 1	LVR07125A40T x 1	LC1D18×1	LV429636 × 1
25	40	BLRCH400A480B52 × 1	LVR05250A40T x 1	LVR07250A40T x 1	LC1D38 × 1	LV429633 × 1
50	80	BLRCH400A480B52 × 2	LVR05500A40T x 1	LVR07500A40T x 1	LC1D95 × 1	LV429630 × 1
100	160	BLRCH400A480B52 × 4	LVR05X00A40T x 1	LVR07X00A40T x 1	LC1F185 × 1	LV431631 × 1

Effective Power	Q _N at	Capacitor Ref.	14% fr = 135Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	525 V		D R Ref.		36 kA at 380/415 V
6.5	10.6	BLRCH106A127B52 × 1	LVR14065A40T x 1	LC1D12 × 1	LV429637 × 1
12.5	18.5	BLRCH185A222B52 × 1	LVR14125A40T x 1	LC1D18×1	LV429636 × 1
25	37.7	BLRCH377A452B52 × 1	LVR14250A40T x 1	LC1D38 × 1	LV429633 × 1
50	75	BLRCH377A452B52 × 2	LVR14500A40T x 1	LC1D95 × 1	LV429630 × 1
100	150	BLRCH377A452B52 × 4	LVR14X00A40T x 1	LC1F185 × 1	LV431631 × 1

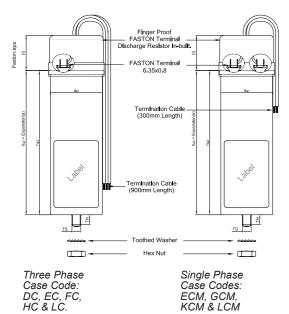
Networl	k 690	V, 50 Hz Capaci	tor Voltage 83	0 V 5.7 % / 7	% Detuned F	ilter
	at	Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	830 V		D R Ref.	D R Ref.		36 kA at 380/415 V
12.5	17.1	BLRCH171A205B83 × 1	LVR05125A69T × 1	LVR07125A69T × 1	LC1D12 × 1	LV429637 × 1
25	34.2	BLRCH171A205B83 × 2	LVR05250A69T × 1	LVR07250A69T × 1	LC1D25 × 1	LV429635 × 1
50	68.4	BLRCH171A205B83 × 4	LVR05500A69T × 1	LVR07500A69T × 1	LC1D50 × 1	LV429632 × 1
100	136.8	BLRCH171A205B83 × 8	LVR05X00A69T × 1	LVR07X00A69T × 1	LC1F185 × 1	LV430631 × 1

PowerLogic[™] PFC Capacitor + Detuned Reactor + Contactor + MCCB

Networ	k 400	V, 60 Hz Capacit	tor Voltage 480	OV 5.7%/7°	% Detuned Fi	ilter
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 250Hz	7% fr = 230Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	480 V		D R Ref.	D R Ref.		36 kA at 380/415 V
12.5	17.3	BLRCH144A173B48 × 1	LVR05125B40T × 1	LVR07125B40T × 1	LC1D18×1	LV429636 × 1
25	34.6	BLRCH288A346B48 × 1	LVR05250B40T × 1	LVR07250B40T × 1	LC1D38 × 1	LV429633 × 1
50	67.9	BLRCH288A346B48 × 2	LVR05500B40T × 1	LVR07500B40T × 1	LC1D95 × 1	LV429630 × 1
100	135.8	BLRCH288A346B48 × 4	LVR05X00B40T × 1	LVR07X00B40T × 1	LC1F185 x 1	LV431631 × 1

Effective Power	Q _N at	Capacitor Ref.	14% fr = 160Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	480 V		D R Ref.		36 kA at 380/415 V
12.5	16.3	BLRCH136A163B48 × 1	LVR14125B40T × 1	LC1D18×1	LV429636 × 1
25	31	BLRCH258A310B48 × 1	LVR14250B40T × 1	LC1D38 × 1	LV429633 × 1
50	62	BLRCH258A310B48 × 2	LVR14500B40T × 1	LC1D95 × 1	LV429630 × 1
100	124	BLRCH258A310B48 × 4	LVR14X00B40T × 1	LC1F185 × 1	LV431631 × 1

Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 250Hz	Switching: Contactor Ref.	Protection: Compact NSX
(kvar)	575 V		D R Ref.		36 kA at 380/415 V
12.5	18	BLRCH150A180B57 × 1	LVR05125B48T × 1	LC1D12 × 1	LV429636 × 1
25	35	BLRCH292A350B57 × 1	LVR05250B48T × 1	LC1D38 x 1	LV429633 × 1
50	70	BLRCH292A350B57 × 2	LVR05500B48T × 1	LC1D65 × 1	LV429631 x 1
100	140	BLRCH292A350B57 × 4	LVR05X00B48T × 1	LC1F185 × 1	LV431631 × 1



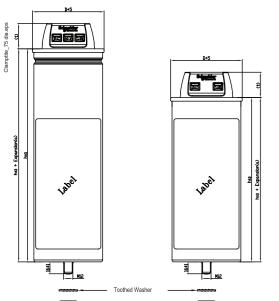
Effective Q _N	Capacitor Ref.	5.7% fr = 250Hz	Switching:	Protection:	
Power (kvar)	at 690 V		R Ref.	Contactor Ref.	Compact NSX 36 kA at 380/415 V
12.5	16.5	BLRCH138A165B69 × 1	LVR05125B60T × 1	LC1D12 × 1	LV429636 × 1
25	33.1	BLRCH276A331B69 × 1	LVR05250B60T × 1	LC1D25 × 1	LV429634 × 1
50	66.2	BLRCH276A331B69 × 2	LVR05500B60T × 1	LC1D65	LV429631 × 1
100	132.4	BLRCH276A331B69 × 4	LVR05X00B60T × 1	LC1F185 × 1	LV430630 × 1

Se.com/contact Life is On | Schneider Electric 39

Case Code: DC, EC, FC, HC & LC.

Can type capacitors mechanical characteristics

Case Code: DC, HC, LC, ECM, GCM, KCM


min.16 mm
min.16 mm
max.10 mm

Mounting details (for M10/M12 mounting stud)

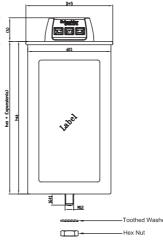
Torque	M10: 7 N.m M12: 10 N.m
Toothed washer	M10/M12
Hex nut	M10/M12
Terminal assembly Ht. (t)	50 mm

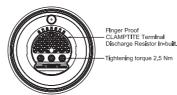
Size (d)	TS	TH
Ø 50	M10	10 mm
Ø 63	M12	13 mm
Ø 70	M12	16 mm

Case code	Diameter d (mm)		Height h + t (mm)	Weight (kg)
DC	50	195	245	0.7
EC/ECM	63	90	140	0.5
FC	63	115	165	0.5
НС	63	195	245	0.9
GCM	63	140	190	0.6
KCM	70	140	190	0.6
LC/LCM	70	195	245	1.1

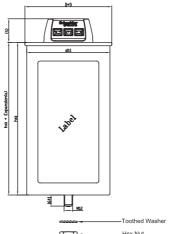
Single phase case code: RCM

Three Phase Case Code: MC, NC, RC & SC


Case Code: MC, NC, RC, RCM & SC


Creepage distance	min.13 mm
Clearance	min.13 mm
Expansion (a)	max.12 mm

Mounting details (for M12 mounting stud)


Torque	T = 10 Nm
Toothed washer	J12.5 DIN 6797
Hex nut	BM12 DIN 439
Terminal screw	M5
Terminal assembly Ht. (t)	30 mm

Case code	Diameter d (mm)	Height h (mm)	Height h + t (mm)	Weight (kg)	
MC	75	203	233	1.2	
NC	75	278	308	1.2	
RC/RCM	90	212	242	1.6	
sc	90	278	308	2.3	

Three Phase Case Code: TC, UC & VC

Torque	T = 10 Nm
Toothed washer	J12.5 DIN 6797
Hex nut	BM12 DIN 439
Terminal screw	M5
Terminal assembly Ht. (t)	30 mm

min.13 mm min.13 mm

max.12 mm

	Diameter d (mm)		_	Weight (kg)
TC	116	212	242	2.5
UC	116	278	308	3.5
VC	136	212	242	3.2

Case Code: XC & YC

Case Code: TC, UC & VC

Mounting details (for M12 mounting stud)

Creepage distance

Clearance Expansion (a)

Creepage distance	min.13 mm
Clearance	34 mm
Expansion (a)	max.17 mm

Mounting details (for M12 mounting stud)

Torque	T = 10 Nm
Toothed washer	J12.5 DIN 6797
Hex nut	BM12 DIN 439
Terminal screw	M10
Terminal assembly Ht. (t)	43 mm

Case code	Diameter d (mm)		Height h + t (mm)	Weight (kg)
TCM	116	212	255	3.5
VCM	136	212	255	4.0
хс	116	278	321	4.1
YC	136	285	328	5.3

Single Phase Case Code: TCM & VCM

H2 N2

Three Phase Case Code: XC & Y

A robust, safe, reliable and high-performance solution for power factor correction in standard operating conditions.

PowerLogic[™] PFC Xtreme Heavy Duty Capacitor Box

Operating conditions

- Optimum solution for stand alone PF compensation
- For networks with significant non-linear loads (NLL ≤ 25 %).
- Higher operating temperature up to 60 °C.
- Higher number of switching operations up to 10000/year.
- Higher Long life expectancy up to 150,000 hours.

PowerLogic™ PFC Xtreme Heavy Duty Capacitor Box – Answer for high performance with robustness

Safety

- Its unique safety feature electrically disconnects the capacitors safely at the end of their useful life.
- The disconnectors are installed on each phase, which makes the capacitors very safe, in addition to the protective steel enclosure.
- Use of Aluminum inside the steel enclosure eliminates the risk of any fire hazards unlike with plastic cells.

High performance

- Heavy edge metallization/wave-cut edge to ensure high inrush current capabilities and high current handling.
- Special resistivity and profile metallization for better self-healing & enhanced life.

Robustness

- Double metallic protection.
- Mechanically well suited for "stand-alone" installations.

Technology

Constructed internally with single-phase capacitor elements.

The design is specially adapted for mechanical robustness and stability and designed for harsh environments. The enclosures of the units are designed to ensure that the capacitors operate reliably in hot and humid tropical conditions, without the need of any additional ventilation louvres (see technical specifications).

Special attention is paid to equalization of temperatures within the capacitor enclosures since this gives better overall performance.

Benefits

- Robustness with double metal protection (Aluminum cans inside steel box)
- Suitable for individual compensation with stand alone installation.
- □ Direct connection to a machine, in harsh environmental conditions.
- Dual safety
- □ Pressure Sensitive Disconnector(PSD) in aluminum cans with metal enclosure

Technical specifications

General c	haracteristics			
Standards		IEC 60831-1/2		
Voltage range		400 to 525 V		
Frequency		50 / 60 Hz		
Power range		5 to 75 kvar		
Losses (dielect	ric)	< 0.2 W/kvar		
Losses (total)		< 0.5 W/kvar		
Capacitance to	lerance	-5 %, +10 %		
Voltage test	Between terminals	2.15 x U _N (AC), 10 s		
	Between terminal & container	≤ 525 V: 3 kV (AC), 10 s or 3.66 kV (AC), 2 s > 525 V: 3.66 kV (AC), 10 s or 4.4 kV (AC), 2 s		
	Impulse voltage	≤ 690 V: 8 kV		
Discharge resis	stor	Fitted, standard discharge time 60 s		
Working	conditions			
Ambient tempe	rature	-25 / 60 °C		
Humidity		95 %		
Altitude		2,000 m above sea level		
Overvoltage		1.1xU _N 8h in every 24 h		
Overcurrent		Up to 1.8xI _N		
Peak inrush cu	rrent	350 x I _N		
Switching opera	ations (max.)	Up to 10000 switching operations per year		
Mean Life expe	ectancy	Up to 150,000 hrs		
Harmonic conte	ent withstand	N _{LL} ≤ 25 %		
Installatio	on characteristi	cs can be a second and a second		
Mounting positi	on	Indoor, upright		
Fastening		Mounting cleats		
Earthing				
Terminals		Bushing terminals designed for large cable termination		
Safety fea	atures			
Safety		Self-healing + Pressure-sensitive disconnector for each phase + Discharge device		
Protection		IP20		
Construc	tion			
Casing		Sheet steel enclosure		
Dielectric		Metallized polypropylene film with Zn/Al alloy. special resistivity & profile. Special edge (wave-cut)		
Impregnation		Non-PCB, polyurethene soft resin.		

▲ WARNING

HAZARD OF ELECTRICAL SHOCK

Wait 5 minutes after isolating supply before handling

Failure to follow these instructions can result in injury or equipment damage

PowerLogic[™] PFC Xtreme Heavy Duty Capacitor

Rated	Rated Voltage 380/400/415 V									
50 Hz			60 Hz			μF (X3)	Case Code	Reference Number		
Q_N (kvar) I_N (A)		Q_N (kvar) I_N (A)								
380 V	400 V	415 V	at 400 V	380 V	400 V	415 V	at 400 V			
18.8	20.8	22.4	30.0	22.6	25.0	26.9	36.1	137.9	GB	BLRBH208A250B40
22.6	25.0	26.9	36.1	27.1	30.0	32.3	43.3	165.7	GB	BLRBH250A300B40
37.6	41.7	44.9	60.2	45.1	50.0	53.8	72.2	276.4	IB	BLRBH417A500B40
45.1	50.0	53.8	72.2					331.4	IB	BLRBH500A000B40

Rated	Rated Voltage 480 V									
50 Hz			60 Hz			μF (X3)	Case Code	Reference Number		
Q_N (kvar) I_N (A)			Q_N (kvar) I_N (A)							
400 V	415 V	480 V	at 480 V	400 V	440 V	480 V	at 480 V			
17.9	19.3	25.8	31.0	21.5	26.0	31.0	37.2	118.8	IB	BLRBH258A310B48
29.0	31.2	41.7	50.2	34.8	42.0	50.0	60.2	192.0	IB	BLRBH417A500B48
43.0	46.3	61.9	74.5					284.9	IB	BLRBH619A000B48
47.2	50.8	50.8 68 81.8						192.0	IB	BLRBH680A000B48

Rated	Rated Voltage 525 V									
50 Hz			60 Hz	· ·			μF (X3)	Case Code	Reference Number	
Q_N (kvar) I_N (A)		Q _N (kvar) I _N (A)								
415 V	480 V	525 V	at 525 V	400 V	480 V	525 V	at 525 V			
15.6	20.9	25.0	27.5	17.4	25.1	30.0	33.0	96.2	GB	BLRBH250A300B52
25.0	33.4	40.0	44.0	27.9	27.9 40.1 48.0 5		52.8	153.9	IB	BLRBH400A480B52
46.9	62.7	75					96.2	IB	BLRBH750A000B52	

PowerLogic[™] PFC Xtreme Heavy Duty Capacitor Box harmonic applications

PowerLogic™ PFC Xtreme Heavy Duty Capacitor Boxs are designed for applications where higher number of non-linear loads are present. Higher current carrying capacity in PowerLogic™ PFC Xtreme Heavy Duty Capacitor Box allows the operations in stringent conditions and dedicated for standalone applications.

Detuned reactor

PowerLogic™ PFC Xtreme Heavy Duty Capacitor Box

Operating conditions

- For networks with a large number of non-linear loads (N_{LL} < 50 %).
- Significant voltage disturbances.
- Very frequent switching operations, up to 10000/ year.

Rated voltage

In a detuned filter application, the voltage across the capacitors is higher than the network service voltage (U_s) . Then, capacitors must be designed to withstand higher voltages.

Depending on the selected tuning frequency, part of the harmonic currents is absorbed by the detuned capacitor bank. Then, capacitors must be designed to withstand higher currents, combining fundamental and harmonic currents.

The rated voltage of PowerLogic[™] PFC Xtreme Heavy Duty Capacitor Box is given in the table below, for different values of network service voltage and relative impedance.

Capacitor Rated Volta	age U _N (V)	Network Service Voltage U _s (V)		
		50 Hz	60 Hz	
		400	400	
Relative Impedance	5.7	400	400	
(%)	7	480	480	
	14	480	480	

In the following pages, the effective power (kvar) given in the tables is the reactive power provided by the combination of capacitors and reactors.

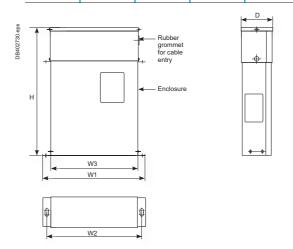
PowerLogic[™] PFC Xtreme Heavy Duty Capacitor Box + Detuned Reactor + Contactor + MCCB

Networ	Network 400 V, 50 Hz Capacitor Voltage 480 V 5.7 % / 7 % Detuned Reactor							
Effective Power		Capacitor Ref.	5.7% fr = 215Hz	7% fr = 190Hz	Switching: Contactor Ref.	Protection: Compact NSX		
(kvar)	at 480 V		D R Ref.	D. R Ref.	Contactor Rei.	50 kA at 380/415 V		
12.5	17.1	BLRBH171A205B48 × 1	LVR05125A40T x 1	LVR07125A40T x 1	LC1D18×1	LV429846 × 1		
25	33.9	BLRBH339A407B48 × 1	LVR05250A40T x 1	LVR07250A40T x 1	LC1D38 x 1	LV429843 × 1		
50	67.9	BLRBH339A407B48 × 2	LVR05500A40T x 1	LVR07500A40T x 1	LC1D95 x 1	LV429840 × 1		
100	136.2	BLRBH339A407B48 × 4	LVR05X00A40T x 1	LVR07X00A40T x 1	LC1F185 x 1	LV431831 × 1		

Network 400 V, 50 Hz Capacitor Voltage 480 V 14 % Detuned Reactor								
Effective Power (kvar)	Q _N at 480 V	Capacitor Ref.	14% fr = 135Hz D R Ref.	Switching: Contactor Ref.	Protection: Compact NSX 50 kA at 380/415 V			
12.5	15.6	BLRBH156A187B48 × 1	LVR14125A40T x 1	LC1D18×1	LV429846 × 1			
25	31.5	BLRBH315A378B48 × 1	LVR14250A40T x 1	LC1D38 x 1	LV429843 x 1			
50	61.9	BLRBH619A000B48 × 1	LVR14500A40T x 1	LC1D95 x 1	LV429840 x 1			
100	123.8	BLRBH619A000B48 × 2	LVR14X00A40T x 1	LC1F185 x 1	LV431831 x 1			

Networ	letwork 400 V, 60 Hz Capacitor Voltage 480 V 5.7 % / 7 % Detuned Reactor								
Effective Power	Q _N at	Capacitor Ref.	5.7% fr = 250Hz		- · · · · · ·	Protection: Compact NSX			
	480 V		D R Ref.	D. R Ref.	Ref.	50 kA at 380/415 V			
25	34.6	BLRBH288A346B48 × 1	LVR05250B40T × 1	LVR07250B40T × 1	LC1D32 × 1	LV429843 × 1			
50	69.2	BLRBH288A346B48 × 2	LVR05500B40T × 1	LVR07500B40T × 1	LC1D95 x 1	LV429840 × 1			
00	138.4	BLRBH288A346B48 × 4	LVR05X00B40T × 1	LVR07X00B40T × 1	LC1F195 x 1	LV431831 × 1			

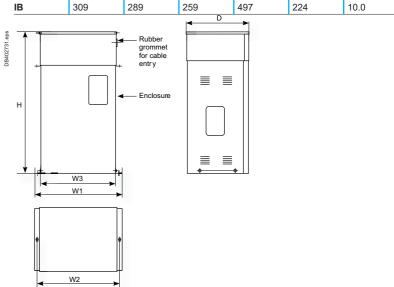
Network 400 V, 60 Hz Capacitor Voltage 480 V 14 % Detuned Reactor								
Effective Power (kvar)	Q _N at 480 V	Capacitor Ref.	14% fr = 160Hz	Switching: Contactor Ref.	Protection: Compact NSX 50 kA at			
(KVai)	400 V		D R Ref.	Kei.	380/415 V			
25	31	BLRBH258A310B48 × 1	LVR14250B40T × 1	LC1D38 x 1	LV429843 x 1			
50	62	BLRBH258A310B48 × 2	LVR14500B40T × 1	LC1D95 x 1	LV429840 x 1			
100	124	BLRBH258A310B48 × 4	LVR14X00B40T × 1	LC1F185 x 1	LV431831 x 1			



PowerLogic[™] PFC Xtreme Heavy Duty Capacitor Box Mechanical characteristics

Case	Code: DB, EB, FB, GB & HB	
0	and the form	20
Creepa	age distance	30 mm
Cleara	nce	
	Phase to phase	25 mm (min.)
	Phase to earth	19 mm (min.)
Mour	nting details: mounting scre	w M6. 2 Nos.

Mounting details. Mounting screw Me, 2 Nos.						
Case code	W1 (mm)	W2 (mm)	W3 (mm)	H (mm)	D (mm)	Weight (kg)
DB	263	243	213	355	97	4.8
EB	263	243	213	260	97	3.6
FB	309	289	259	355	97	5.4
GB	309	289	259	355	153	7.5
НВ	309	289	259	455	153	8.0



Case Code: IB

Creepage distance	30 mm				
Clearance					
Phase to phase	25 mm (min.)				
Phase to earth	19 mm (min.)				
Mounting details, mounting server MC 2 No.					

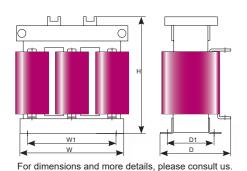
Mounting details: mounting screw M6, 2 Nos.

	W1 (mm)		W3 (mm)	H (mm)		Weight (kg)
IB	309	289	259	497	224	10.0

46 se.com/contact Life is On | Schneider Electric 47

Detuned reactors

Contents


Presentation	
Power Factor Correction guideline	
Low Voltage capacitors	1
Powerlogic [™] PFC Detuned Reactor	50
Power Factor controllers	5
Contactors	6
Appendix	6

Powerlogic[™] PFC **Detuned Reactor**

3 Phase Detuned reactors

The detuned reactors (DR) are designed to protect the capacitors by preventing amplification of the harmonics present on the network.

Operating conditions

- Use: indoor.
- Storage temperature: -40 °C, +60 °C.
- Relative humidity in operation: 20-80 % .
- Operating temperature:
- □ altitude: ≤ 1000 m: Min = 0 °C, Max = 55 °C, highest average over 1 year = 40 °C, 24 hours = 50 °C.
- □ altitude: ≤ 2000 m: Min = 0 °C, Max = 50°C, highest average over 1 year = 35 °C, 24 hours = 45°C.

Installation guidelines

- Forced ventilation required.
- Vertical detuned reactor winding for better heat dissipation.
- As the detuned reactor is provided with thermal protection, the normally closed dry contact must be used to disconnect the step in the event of overheating.

Technical specifications

General characteristics	
Description	Three-phase, dry, magnetic circuit,
	impregnated
Applicable Standards	IEC 60076-6
Degree of protection	IP00
Rated voltage	400 to 690 V - 50 Hz
	400 to 600 V - 60 Hz
	Other voltages on request
Inductance tolerance per phase	-5, +5%
Insulation level	1.1 kV
Continious overload factor on	10%
fundamental current for reactor design	
Saturation current	1.8 x l ₁
Dielectric test 50/60 Hz between	4 kV, 1 min
windings and windings/earth	
Thermal protection	Thermal sensor inside the winding connected to a NO contact of 250 V AC, 2 A

Let's define the fundamental current I₁(A) as the current absorbed by the capacitor and detuned reactor assembly, when a purely sinusoidal voltage is applied, equal to the network service voltage U_s(V). $I_1 = Q (kvar)/(\sqrt{3} \times U_s)$

In order to operate safely in real conditions, a detuned reactor must be designed to accept a maximum permanent current (I_{MP}) taking account of harmonic currents and voltage fluctuations. The following table gives the typical percentage of harmonic currents considered for the different tuning orders.

(%)	%	of H	larm	onic
	си	rren	ts	
Tuning order / Relative	İ ₃	i ₅	İ ₇	i ₁₁
Impedance				
2.7 / 14%	5	15	5	2
3.8 / 7%	3	40	12	5
4.2 / 5.7%	2	63	17	5

V ₁	V ₃	V ₅	V ₇	V ₁₁	V ₁₃
100%	0,5%	6,0%	5,0%	3,5%	3,0%

Detuned reactor has to be protecteed from over currents with MCCB. A 1.1 factor is applied in order to allow long-term operation at a supply voltage up to (1.1 x U_s). $I_{MP} = 1.1 \times I_1 + I_3 + I_5 + I_7 + I_{11}$

The maximum permanent current (I_{MP}) as well as the limits of Total voltage harmonics distortion are given in the following table for different tuning orders:

Tuning order	I _{MP} (times I _s)	Max THD _u Limit
2.7 / 14%	1.12	8%
3.8 / 7%	1.2	7%
4.2 / 5.7%	1.3	6%

Force ventilation is mandatory while installing detuned reactors. It is mandatory to connect thermal protection contact to trip the breaker while connecting detuned reactors.

The temperature around the reactor, should be maintained < 50 degrees, to which it is designed (Operating temperature of panel) through proper ventilation.

50 Hz

Powerlogic[™] PFC **Detuned reactors**

50 Hz														
Relative Impedance (%)	kvar	Inductance (mH)	I ₁	I _{MP} (A)	Max losses at I ₁ (W)	Max losses at I _{MP} (W)	Max losses at I _{MP} (W) with full sprectrum	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reference Number
5.70%	6.5	4.727	9.3	12	50	65	100	240	200	160	125	220	9	LVR05065A40
(4.2)	12.5	2.445	18.1	24	80	100	150	240	200	160	125	220	13	LVR05125A40
	25	1.227	36	47	90	115	200	240	200	160	125	220	18	LVR05250A40
	50	0.614	72	95	130	215	320	260	200	200	125	270	24	LVR05500A40
	100	0.307	144	190	200	345	480	350	200	220	125	350	46	LVR05X00A40
7%	6.5	5.775	9.5	11	40	55	100	240	200	160	125	220	8	LVR07065A40
(3.8)	12.5	2.987	18.3	22	70	95	150	240	200	160	125	220	10	LVR07125A40
	25	1.499	36.5	43	100	140	200	240	200	160	125	220	15	LVR07250A40
	50	0.750	73	86	140	200	320	260	200	200	125	270	22	LVR07500A40
	100	0.375	145.9	172	260	365	480	350	200	220	125	350	37	LVR07X00A40
14%	6.5	11.439	10.2	10	80	95	100	240	200	160	125	220	10	LVR14065A40
2.7)	12.5	6.489	18	20	110	135	150	240	200	160	125	220	15	LVR14125A40
	25	3.195	36.6	40	150	185	200	240	200	160	125	220	22	LVR14250A40
	50	1.598	73.2	80	290	360	400	260	200	200	125	270	33	LVR14500A40
	100	0.799	146.3	160	450	550	600	350	200	220	125	350	55	LVR14X00A40

Network \	Network voltage 690 V, 50 Hz													
50 Hz														
Relative Impedance (%)	kvar	Inductance (mH)	I ₁	I _{MP} (A)	Max losses at I ₁ (W)	Max losses at I _{MP} (W)	Max losses at I _{MP} (W) with full sprectrum	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reference Number
5.70%	12.5	7.28	10.5	13.3	70	110	150	240	200	160	125	220	13	LVR05125A69
(4.2)	25	3.654	20.9	27	70	125	200	240	200	160	125	220	18	LVR05250A69
	50	1.827	41.7	53	120	210	320	260	200	200	125	270	30	LVR05500A69
	100	0.913	83.4	106	230	395	600	350	200	220	125	350	42	LVR05X00A69
7%	12.5	8.893	10.6	12	70	95	150	240	200	160	125	220	13	LVR07125A69
(3.8)	25	4.464	21.1	24	70	100	200	240	200	160	125	220	18	LVR07250A69
	50	2.232	42.3	47	160	215	320	260	200	200	125	270	22	LVR07500A69
	100	1.116	84.6	94	260	355	480	350	200	220	125	350	40	LVR07X00A69

Network v	/oltaç	ge 230 V, 5	0 Hz											
50 Hz														
Relative Impedance (%)	kvar	Inductance (mH)	I ₁	I _{MP} (A)	Max losses at I ₁ (W)	Max losses at I _{MP} (W)	Max losses at I _{MP} (W) with full sprectrum	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reference Number
5.70%	6.5	1.651	15.4	20	40	65	100	240	200	160	125	220	8	LVR05065A23T
(4.2)	12.5	0.794	32	42	50	85	150	240	200	160	125	220	13	LVR05125A23T
	25	0.397	63.9	84	80	140	200	240	200	160	125	220	18	LVR05250A23T

1. Use the Max losses at I_{MP}(W) with full sprectrum for sizeing the capacitor bank (Panel design & ventilation)

2. The dimensions mentioned above are the maximum limits.

Powerlogic[™] PFC Detuned reactors

Network v 50 Hz		,											
Relative Impedance (%)	kvar	Inductance (mH)	I _{MP} (A)	Max losses at I ₁ (W)	Max losses at I _{MP} (W)	Max losses at I _{MP} (W) with full sprectrum	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reference Number
5.70%	12.5	2.005	24	60	105	150	240	200	160	125	220	10	LVR05125B40T
(4.2)	25	1.000	48.1	60	105	200	240	200	160	125	220	17	LVR05250B40T
	50	0.500	96.3	120	200	320	260	200	200	125	270	22	LVR05500B40T
	100	0.250	192.5	200	350	480	350	200	220	125	350	39	LVR05X00B40T
7%	12.5	2.450	21.8	80	115	150	240	200	160	125	220	9	LVR07125B40T
(3.8)	25	1.221	43.8	90	130	200	240	200	160	125	220	15	LVR07250B40T
	50	0.611	87.6	150	200	320	260	200	200	125	270	22	LVR07500B40T
	100	0.305	175.3	240	330	480	350	200	220	125	350	35	LVR07X00B40T
14%	12.5	5.139	21	110	135	150	240	200	160	125	220	13	LVR14125B40T
(2.7)	25	2.704	39.9	140	170	200	240	200	160	125	220	18	LVR14250B40T
	50	1.352	79.8	250	305	400	260	200	200	125	270	33	LVR14500B40T
	100	0.676	159.7	370	460	600	350	200	220	125	350	54	LVR14X00B40T

Network v	/oltag	ge 480 V, 60	0 Hz										
50 Hz													
Relative Impedance (%)	kvar	Inductance (mH)	I _{MP} (A)	Max losses at I ₁ (W)	Max losses at I _{MP} (W)	Max losses at I _{MP} (W) with full sprectrum	W (mm)	W1 (mm)	D (mm)	D1 (mm)	H (mm)	Weight (kg)	Reference Number
5.70%	12.5	2.764	20.9	60	95	150	240	200	160	125	220	13	LVR05125B48T
(4.2)	25	1.421	40.6	70	120	200	240	200	160	125	220	18	LVR05250B48T
	50	0.710	81.3	120	210	320	260	200	200	125	270	25	LVR05500B48T
	75	0.474	121.9	180	310	480	350	200	220	125	350	35	LVR05X00B48T
	100	0.355	162.6	210	360	480	350	200	220	125	350	40	LVR05X00B48T
	150	0.237	243.9	260	440	600	350	200	220	125	350	50	LVR05X00B48T

52 se.com/contact 53

Contents

Presentation

Power Factor Correction guideline Low Voltage capacitors Detuned reactors	3 15 43
Easylogic TM PFC RT Controller Series RT6, RT8 and RT12	50
Powerlogic [™] PFC VL Controller Series	52
Contactors Appendix	57 61

Easylogic[™] PFC RT Controller series RT6, RT8 and RT12

Easylogic™ PFC Controller

The Easylogic[™] PFC controllers permanently monitor the reactive power of the installation and control the connection and disconnection of capacitor steps in order to obtain the targeted power factor.

Easylogic™ PFC Controller RT6, RT8 and RT12

Performance

- Permanent monitoring of the network and equipment.
- Information provided about equipment status.
- New control algorithm designed to reduce the number of switching operations and quickly attain the targeted power factor.

Simplicity

- Simplified programming and possibility of intelligent self set-up.
- Ergonomic layout of control buttons.
- Quick and simple mounting and wiring.
- A special menu allows controller self-configuration.

User-friendliness

The large display allows:

- Direct viewing of installation electrical information and capacitor stage condition.
- Direct reading of set-up configuration.
- Intuitive browsing in the various menus (indication, commissioning, configuration).
- Alarm indication.

Range

Type	Number of step output contacts	Part number
RT6	6	51207
RT8	8	51209
RT12	12	51213

Technical specifications

General cha									
Protection Inde	ex								
	Front panel	IP41							
	Rear	IP20							
	Shock test	IK06							
Technical Char	acteristics								
Display		4 digit 7 segment Red LEDs							
Measuring current		0 to 5 A							
Number of steps		6 (RT6), 8(RT8), 12(RT12)							
Supply voltage (V A	AC)	320 to 460 V							
Dimensions		143 x 143 x 67 mm							
Mounting		Flush panel mounting							
Switch board cut-o	ut	139 x 139 mm							
Weight		0.8 Kg							
Operating tempera	ture	0°C – 55°C							
Alarm contact		1 N/O contact							
Alarm conditions		The alarm relay will activate for 1. Over voltage 2. Low power factor 3. Over compensation							
Output contact		3A/ 250V - 1A/400V							
Connection		Phase-to-phase							
CT range		10000/5 A							
cosφ Setting range	1	0.85 ind 1							
Possibility of a dua		No							
Accuracy		±2 %							
Micro cut voltage p	rotection	Yes, if less than 30% of nominal voltage condition for more than 20ms controller disconnects the steps							
Response delay tin	ne	10 to 1800 s							
Reconnection dela	y time	10 to 1800 s							
4-quadrant operation		No, Only suitable for 2-quadrant applications							
Standards									
	IEC	EMC - IEC 61326 - IEC 61000-6-2, IEC 61000-6-4							
	Safety	EN 61010-1							

56 se.com/contact 57

Intelligent Power Factor controllers

Powerlogic[™] PFC VL Controller series VL6, VL12

Powerlogic[™] PFC Controller has all what you need for the simple and efficient operation of your automatic power factor correction equipment to maintain your power factor. It is a simple and intelligent relay which measure, monitor and controls the reactive energy. Easy commissioning, step size detection and monitoring makes it different from others in the market

 $\textit{Powerlogic}^{\text{\tiny{TM}}} \; \textit{PFC Controller VL6, VL12}$

Capacitor bank step monitoring

- Monitoring of all the connected capacitor steps.
- Real time power in "kvar" for the connected steps .
- Remaining step capacity per step as a % of the original power since installation.
- Derating since installation.
- Number of switching operations of every connected step.

System Measurement and monitoring

- THD(u) and THD(u) Spectrum 3rd to 19th Measurement, Display and Alarm.
- Measurement of DQ "kvar" required to achieve target cos phi.
- Present cabinet temperature and maximum recorded temperature.
- System parameters Voltage, Current, Active, reactive and apparent power.
- Large LCD display to monitor real step status and other parameters.

Easy Commissioning

- Automatic Initialization and automatic step detection to do a auto commissioning.
- Automatic wiring correction voltage and current input wiring correction.
- 1A or 5A CT secondary compatible.

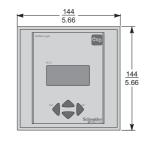
Flexibility to the panel builder and retrofitting

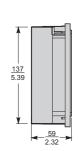
- No step sequence restriction like in the traditional relays.
- Any step sequences with auto detect. No programming needed.
- Easy to retrofit the faulty capacitor with different power.
- Quick and simple mounting and wiring.
- Connect to the digitized Schneider solutions through RS485 communication in Modbus protocol.
- Seamless connection to the Schneider software and gateways.

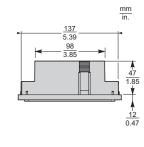
Do more with Powerlogic™ PFC Controller

- Programmable alarms with last 5 alarms log.
- Suitable for medium voltage applications.
- Suitable for 4 quadrant operations.
- Dual cos phi control through digital inputs or export power detection.
- Dedicated alarm and fan control relays.
- Advance expert programming Menu to configure the controller the way you
- New control algorithm designed to reduce the number of switching operations and quickly attain the targeted power factor.

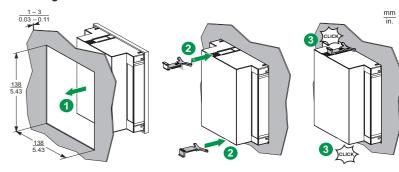
Alarms

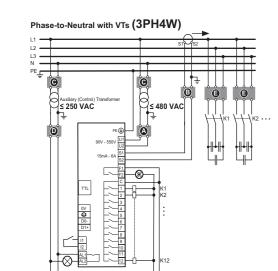

- Faulty Step
- Configurable alarm for step derating
- THDu Limit alarm.
- Temperature alarm
- Self correction by switching off the steps at the event of THDu alarm, temperature alarm and overload limit alarm.
- Under compensation alarm
- Under/Over Voltage Alarm
- Low/High Current Alarm ■ Overload limit alarm
- Hunting alarm
- Maximum operational limits Time and number of switching

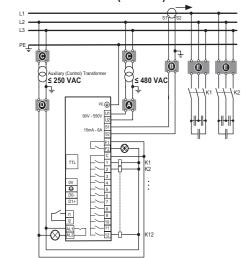

Range


Type	Number of step output contacts	Part number
VL6	06	VPL06N
VL12	12	VPL12N

General characteristics					
Voltage and current Input					
Direct supply voltage	90 – 550 V, 1ph, 50/60 Hz				
	VA Burden: 6 VA				
	300 V LN / 519 V LL CAT III or 550 V CAT II				
Type of input connection	Phase to phase or phase to neutral				
Protection against voltage dips	Automatic disconnection of steps for dips > 15 ms (protection of capacitor)				
CT secondary	1A or 5A compatible				
CT primary range	Up to 9600 A				
Current	15 mA – 6 A, 1PH,				
	VA Burden : < 1 VA				
Connection terminals	Screw type, pluggable. Section: 0.2 – 2.5 mm2 (0.2 – 1 mm 2 for Modbus and digital inputs)				
Power factor settings & algorith	m selection				
Regulation setting - Programmable	From Cos Phi 0.7c to 0.7i				
Reconnection time -Programmable	From 1 to 6500 s				
Response time -Programmable	From 1 to 6500 s				
Possibility of dual cos Phi target	Yes, Through Digital Input or if export power detected				
Program algorithm	AUTOMATIC (best fit) - Default				
	LIFO				
	PROGRESSIVE				
Import export application compatibility	4- Quadrant operation for generator application				
Program intelligence					
Automatic Initialization and Automatic bank detection	Yes				
Detection and display of power, number of switching & derating of all connected steps	Yes				
Capacitor bank step sequence	Any sequence. No restriction/limitation on sequence				


Dimensions





Mounting

Phase-to-Phase with VTs (3PH3W)

- A Upstream protection Voltage input: 2A certified circuit breakers or fuses
- B Shorting block for CT
- OVT primary fuses and disconnect switch
- Output relays: 10 A (max.) certified circuit breakers or fuses (Applicable for applications with voltage transformers only).
 Capacitor primary fuses or CB's

Alarm and control					
Control outputs (step output)	VL6: 6 relays VL12: 12 relays (NO contact)				
common curpute (ctop curput)	250 V LN or LL (CAT III)				
	DC Rating: 48 V DC / 1 A				
	AC Rating : 250 V AC / 5 A				
	Common root: 10 A max.				
Dedicated for central relay					
Dedicated fan control relay	Yes. Normal open contact (NO) 48 V DC / 1 A, 250 V AC / 5 A				
Alarma contact	The relay contact is open when the controller is				
Alarm contact	energized with no alarm and will close in the event of an alarm. The relay is a NC (Normally Close) whe the controller is not energized.				
	Rating: 48 V DC / 1 A, 250 V AC / 5 A				
Digital Input for Cos phi2 target	Dry contact (internal supply 5 V, 10 mA)				
Modbus RS-485 serial port (RTU)	Line polarization / termination, not included				
Communication protocol	Modbus				
Interface TTL	Service port. Only for internal use				
Internal Temperature probe	Yes				
Display and measurement					
Display	LCD graphic 56 x 25 (Backlit)				
Alarms log	5 last alarms				
Voltage Harmonic Distortion measurement	THDu ; Individual odd harmonics distortion from H3 to H19				
Measurement displayed and accuracy	Voltage, Current & Frequency: ±1 %				
	Energy measurements, Cos Phi, THD(u): ±2 %				
	Individual Voltage harmonics (H3 to H19): ±3 %				
	Temperature measurement : ±3 °C				
Testing standards and conform	ities				
Standards	IEC 61010-1				
	IEC 61000 6-2				
	IEC 61000 6-4: level B				
	IEC 61326-1				
	UL 61010				
Conformity and listing					
Conformity and listing	Conformity and listing CE, NRTL, c NRTL, EAC				
Mechanical specifications	E				
Case	Front: Instrument case plastic RAL 7016				
	Rear: Metal				
Degree of Protection	Front: IP41, (IP54 by using a gasket)				
	Rear: IP20				
Weight	0.6 kg				
Size	144 x 144 x 58 mm (H x W x D)				
Panel Cutout	138 x 138 (+0.5) mm, thickness 1 – 3 mm				
Panel Mounting	Flush mounting				
Storage condition					
Temperature for operation	-20 °C +60 °C				
Storage	-40 °C +85 °C				
Humidity	0 % - 95 %, without condensation for operation and storage				
Maximum pollution degree	2				

60 se.com/contact Life is On | Schneider Electric 61

Contactors

Contents

Presentation	
Power Factor Correction guideline	3
Low Voltage capacitors	15
Detuned reactors	49
Power Factor controllers	55
TeSys Contactors	64
Appendix	69

TeSys contactors

For switching 3-phase capacitor banks, used for power factor correction

Direct connection without choke inductors

Special contactors LC1 D•K are designed for switching 3-phase, single- or multiple-step capacitor banks. They comply with standards IEC 60070 and 60831, NFC 54-100, VDE 0560, UL and CSA.

User Tip

User can connect normal power contactor (AC3 duty) to switch the capacitor bank with detuned reactor as detuned reactor acts as a inrush current limiter.

Special contactors

Special contactors **LC1 D•K** are designed for switching 3-phase, single or multiple-step capacitor banks (up to 6 steps). Over 6 steps, it is recommanded to use chokes in order to limit the inrush current and thus improve the lifetime of the installation. The contactors are conform to standards IEC 60070 and 60831, LII and CSA

Contactor applications

Specification

Contactors fitted with a block of early make poles and damping resistors, limiting the value of the current on closing to $60 \, \text{ln}$ max.

This current limitation increases the life of all the components of the installation, in particular that of the fuses and capacitors.

The patented design of the add-on block (n° 90 119-20) ensures safety and long life of the installation.

Operating conditions

There is no need to use choke inductors for either single or multiple-step capacitor banks. Short-circuit protection must be provided by gI type fuses rated at 1.7...2 In.

Maximum operational power

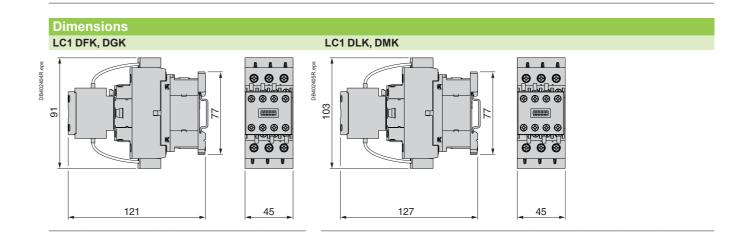
The power values given in the selection table below are for the following operating conditions:

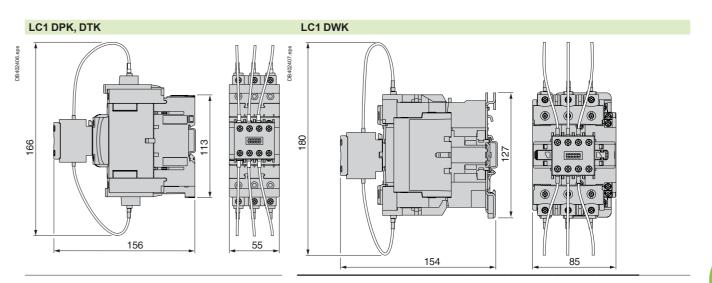
Prospective peak current at switch-on	LC1 D∙K	200 In		
Maximum operating rate	LC1 DFK, DGK, DLK, DM	240 operating cycles/hour		
	LC1 DTK, DWK		100 operating cycles/hour	
Electrical durability at	All contactor ratings	400 V	100 000 operating cycles	
nominal load		690 V	100 000 operating cycles	

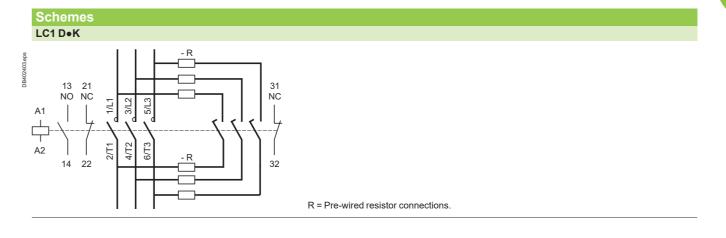
Operational power at 50/60 Hz ⁽¹⁾ θ ≤ 55 °C ⁽²⁾		Instantaneous auxiliary contacts		Tightening torque on cable end	Basic reference, to be completed by adding the voltage code (3)	pleted	
220 V 240 V	400 V 440 V	660 V 690 V					
kvar	kvar	kvar	N/O	N/C	N.m		kg
6.7	12.5	18	1	2	1.7	LC1 DFK••	0.430
8.5	16.7	24	1	2	1.7	LC1 DGK••	0.450
10	20	30	1	2	2.5	LC1 DLK••	0.600
15	25	36	1	2	2.5	LC1 DMK◆◆	0.630
20	33.3	48	1	2	5	LC1 DPK••	1.300
25	40	58	1	2	5	LC1 DTK••	1.300
40	60	92	1	2	9	LC1 DWK12●●	1.650

Switching of multiple-step capacitor banks (with equal or different power ratings)

The correct contactor for each step is selected from the above table, according to the power rating of the step to be switched.


Example: 50 kvar 3-step capacitor bank. Temperature: 50 °C and U = 400 V or 440 V. One 25 kvar step: contactor LC1 DMK, one 15 kvar step: contactor LC1 DGK, and one 10 kvar step: contactor LC1 DFK.


- (1) Operational power of the contactor according to the scheme on the page opposite.
- (2) The average temperature over a 24-hour period, in accordance with standards IEC 60070 and 60831 is 45 °C.
- (3) Standard control circuit voltages (the delivery time is variable, please consult your Regional Sales Office):


Volts	24	48	120	220	230	240	380	400	415	440
50/60 Hz	B7	E7	G7	M7	P7	U7	Q7	V7	N7	R7

TeSys contactors

For switching 3-phase capacitor banks, used for power factor correction

64 se.com/contact

TeSys contactors⁽¹⁾ For switching 3-phase capacitor

For switching 3-phase capacitor banks used for power factor correction

Standard contactors

Capacitors, together with the circuits to which they are connected, form oscillatory circuits which can, at the moment of switch-on, give rise to high transient currents (> 180 In) at high frequencies (1 to 15 kHz).

As a general rule, the peak current on energisation is lower when:

- the mains inductances are high
- the line transformer ratings are low
- the transformer short-circuit voltage is high
- the ratio between the sum of the ratings of the capacitors already switched into the circuit and that of the capacitor to be switched in is small (for multiple step capacitor banks).

In accordance with standards IEC 60070, NF C 54-100, VDE 0560, the switching contactor must be able to withstand a continuous current of 1.43 times the rated current of the capacitor bank step being switched.

The rated operational powers given in the tables below take this overload into account. Short-circuit protection is normally provided by gI type HPC fuses rated at 1.7 to 2 ln.

Contactor applications

Operating conditions

Capacitors are directly switched. The values of peak current at switch-on must not exceed the values indicated opposite.

An inductor may be inserted in each of the three phases supplying the capacitors to reduce the peak current, if necessary.

Inductance values are determined according to the selected operating temperature.

Power factor correction by a single-step capacitor bank

The use of a choke inductor is unnecessary: the inductance of the mains supply is adequate to limit the peak to a value compatible with the contactor characteristics.

Power factor correction by a multiple-step capacitor bank

Select a special contactor as defined on page B8/21.

If a standard contactor is used, it is essential to insert a choke inductor in each of the three phases of each step.

Maximum operational power of contactors Standard contactors

Maximum operating rate: 120 operating cycles/hour. Electrical durability at maximum load: 100 000 operating cycles. With choke inductors connected, where necessary.

Operation	nal power a	Max.	Contactor				
θ ≤ 40 °C			θ ≤ 55 °C ⁽²⁾			peak current	rating (1)
220/240 V	400/440 V	600/690 V	220/240 V	400/440 V	600/690 V		
kvar	kvar	kvar	kvar	kvar	kvar	Α	
6	11	15	6	11	15	560	LC1D09, D12
9	15	20	9	15	20	850	LC1D18
11	20	25	11	20	25	1600	LC1D25
14	25	30	14	25	30	1900	LC1D32, D38
17	30	37	17	30	37	2160	LC1D40
22	40	50	22	40	50	2160	LC1D50
22	40	50	22	40	50	3040	LC1D65
35	60	75	35	60	75	3040	LC1D80, D95
50	90	125	38	75	80	3100	LC1D115
60	110	135	40	85	90	3300	LC1D150
70	125	160	50	100	100	3500	LC1F185
80	140	190	60	110	110	4000	LC1F225
90	160	225	75	125	125	5000	LC1F265
100	190	275	85	140	165	6500	LC1F330
125	220	300	100	160	200	8000	LC1F400
180	300	400	125	220	300	10 000	LC1F500
250	400	600	190	350	500	12 000	LC1F630
250	400	600	190	350	500	14 200	LC1F800
200	350	500	180	350	500	25 000	LC1BL
300	550	650	250	500	600	25 000	LC1BM
500	850	950	400	750	750	25 000	LC1BP
600	1100	1300	500	1000	1000	25 000	LC1BR

66 se.com/contact Life is On | Schneider Electric 67

⁽¹⁾ TeSys D Green contactors have not been validated for switching the primaries of 3-phase LV/LV transformers.

⁽²⁾ Upper limit of temperature category conforming to IEC 60070. 600

Appendix

Contents

Presentation Power Factor Correction guideline Low Voltage capacitors Detuned reactors Power Factor controllers Contactors	3 15 49 55 63
Influence of harmonics in electrical installations	70
Safety features	71
Protection Devices in APFC Panel	72
Find more about Power Quality Solutions	73
Glossary	74
Relevant documents	74

Influence of harmonics in electrical installations

Safety features

Since the harmonics are caused by nonlinear loads, an indicator for the magnitude of harmonics is the ratio of the total power of nonlinear loads to the power supply transformer

This ratio is denoted $N_{\scriptscriptstyle LL}$, and is also known

N_{LL} = Total power of non-linear loads (G_h)/ Installed transformer rating (S_n)

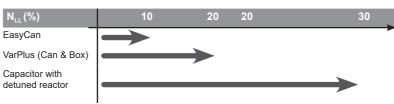
Example:

- > Power supply transformer rating: S_n = 630 kVA
- > Total power of non-linear loads: G_h = 150 kVA $> N_{11} = (150/630) \times 100 = 24 \%.$

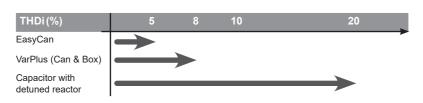
Definition of harmonics

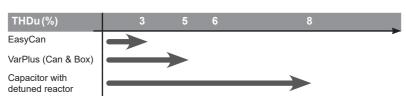
The presence of harmonics in electrical systems means that current and voltage are distorted and deviate from sinusoidal waveforms. Harmonic currents are currents circulating in the networks and whose frequency is an integer multiple of the supply frequency. Harmonic currents are caused by non-linear loads connected to the distribution system. A load is said to be non-linear when the current it draws does not have the same waveform as the supply voltage. The flow of harmonic currents through system impedances in turn creates voltage harmonics, which distort the supply voltage.

The most common non-linear loads generating harmonic currents use power electronics, such as variable speed drives, rectifiers, inverters, etc. Loads such as saturable reactors, welding equipment, and arc furnaces also generate harmonics. Other loads such as inductors, resistors and capacitors are linear loads and do not generate harmonics.


Effects of harmonics

Capacitors are particularly sensitive to harmonic currents since their impedance decreases proportionally to the order of the existing harmonics. This can result in capacitor overload, constantly shortening its operating life. In some extreme situations, resonance can occur, resulting in an amplification of harmonic currents and a very high voltage distortion.


To ensure good and proper operation of the electrical installation, the harmonic level must be taken into account in selecting power factor correction equipment. A significant parameter is the cumulated power of the non-linear loads generating harmonic currents.


Taking account of harmonics

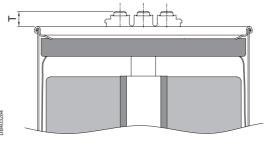
The percentage of non-linear loads N₁₁ is a first indicator for the magnitude of harmonics. The proposed selection of capacitors depending on the value of N_{LL} is given in the diagram below.

A more detailed estimation of the magnitude of harmonics can be made with measurements. Significant indicators are current harmonic distortion THDi and voltage harmonic distortion THDu, measured at the transformer secondary, with no capacitors connected. According to the measured distortion, different technologies of capacitors shall be selected:

The capacitor technology has to be selected according to the most restrictive measurement. Example, a measurement is giving the following results

- THDi = 15 % Harmonic solution.
- THDu = 3.5 % VarPlus solution.

Harmonic solution has to be selected.



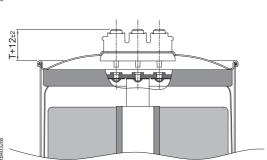
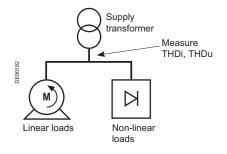

Figure 1 - (a) Metal laver - (b) Polypropylene film

Figure 2

Cross-section view of a three-phase capacitor after Pressure Sensitive Device operated: bended lid and disconnected

Self-healing is a process by which the capacitor restores itself in the event of a fault in the dielectric which can happen during high overloads, voltage transients


When insulation breaks down, a short duration arc is formed (figure 1).

The intense heat generated by this arc causes the metallization in the vicinity of the arc to vaporise (figure 2).

Simultaneously it re-insulates the electrodes and maintains the operation and integrity of the capacitor (figure 3).

Pressure Sensitive Disconnector (also called 'tear-off fuse'): this is provided in each phase of the capacitor and enables safe disconnection and electrical isolation at the end of the life of the capacitor.

Malfunction will cause rising pressure inside the can. Pressure can only lead to vertical expansion by bending lid outwards. Connecting wires break at intended spots. Capacitor is disconnected irreversibly.

Protection Devices in APFC Panel

Over voltage

In the event of an over voltage, electrical stress on the capacitor dielectric and the current drawn by the capacitors will increase. The APFC equipment must be switched off in the event of over voltage with suitable over voltage relay.

Over Current

Over current condition is harmful to all current carrying components. The capacitor bank components must be rated based on the maximum current capacity. A suitable over current relay with an alarm function must be used for over current protection.

Short circuit protection

Short circuit protection at the incomer of the capacitor bank must be provided by devices such as MCCB's and ACB's. It is recommended to use MCB or MCCB for short circuit protection at every step.

Thermal Overload

A thermal overload relay must be used for over load protection and must be set at 1.3 times the rated current of capacitors (as per IEC 60831).

In case of de tuned capacitor banks, the over load setting is determined by the maximum over load capacity of the de tuning reactor. (1.12 = 4.2(14%), 1.19 = 3.8(7%), 1.3 = 2.7(5.7%)). If MCCB's are not present, it is recommended to use a thermal overload relay with the stage contactor to make sure the stage current does not exceed its rated capacity.

Over Temperature protection

The APFC controller must be tripped with the help of thermostats in cases the internal ambient temperature of the capacitor bank exceeds the temperature withstand characteristics of the capacitor bank components. Reactors are provided with thermal switches and can be isolated in the case of over temperature conditions.

Find more about Power Quality Solutions

We deliver smart & cost-effective Power quality solutions to improve our customers' efficiency

Powerlogic™

Low Voltage Capacitor Banks

Energy efficiency, as simple as Powerlogic™ PFC Capacitor Bank

Find out more visit www.schneider-electric.com and download PFCED310004EN

AccuSine PCS+

Harmonic Filtering and Reactive Power Compensations

The Schneider Electric solution for active harmonic filtering in industrial and building installations

Find out more visit www.schneider-electric.com and download AMTED109015EN

72 se.com/contact Life is On | Schneider Electric 73

Glossary

Active current (la):

In the vector representation, component of the current vector which is co-linear with the voltage vector.

Real power transmitted to loads such as motors, lamps, heaters, computers, and transformed into mechanical power, heat or light.

Apparent power:

In a circuit where the applied r.m.s. voltage is Vrms and the circulating r.m.s. current is Irms, the apparent power S (kVA) is the product: V_{ms} x I_{ms}. The apparent power is the basis for electrical equipment rating.

Detuned reactor:

Reactor associated to a capacitor for Power Factor Correction in systems with significant non-linear loads, generating harmonics. Capacitor and reactor are configured in a series resonant circuit, tuned so that the series resonant frequency is below the lowest harmonic frequency present in the system.

Displacement Power Factor:

For sinusoidal voltage and current with a phase angle φ , the Power Factor is equal to cos_Φ, called Displacement Power Factor (DPF)

Harmonic distortion:

Indicator of the current or voltage distortion, compared to a sinusoidal waveform.

The presence of harmonics in electrical systems means that current and voltage are distorted and deviate from sinusoidal waveforms. Harmonic currents and voltages are signals circulating in the networks and which frequency is an integer multiple of the supply frequency.

"Shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 1 000 V - Part 1: General - Performance, testing and rating - Safety requirements - Guide for installation and operation".

In-rush current:

High-intensity current circulating in one piece of equipment after connection to the supply network.

kVA demand:

Maximum apparent power to be delivered by the Utility, which determines the rating of the supply network and the tariff of subscription.

Polypropylene:

Plastic dielectric material used for the construction of low-voltage capacitors.

Power Factor:

The power factor λ is the ratio of the active power P (kW) to the apparent power S (kVA) for a given

 $\lambda = P(kW) / S(kVA)$.

Power Factor Correction:

Improvement of the Power Factor, by compensation of reactive energy or harmonic mitigation (reduction of the apparent power S, for a given active power P). Rated current:

Current absorbed by one piece of equipment when supplied at the rated voltage

Rated voltage:

Operating voltage for which a piece of equipment has been designed, and which can be applied continuously.

Reactive current (Ir):

Component of the current vector which is in quadrature with the voltage vector.

Reactive power:

Product of the reactive current times the voltage.

Value of the supply network voltage, declared by the Utility

Service current:

Amplitude of the steady-state current absorbed by one piece of equipment, when supplied by the Service Voltage.

Usual formulas:

Apparent power: $S = V_{rms} \times I_{rms}$ (kVA). Active power: $P = V_{rms} \times Ia = V_{rms} \times I_{rms} \times cos\phi$

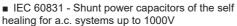
Reactive power: $Q = V_{rms} \times Ir = V_{rms} \times I_{rms} \times \sin \varphi$

Voltage sag:

Temporary reduction of the supply voltage magnitude, between 90 and 1 % of the service voltage, with a duration between ½ period and

Relevant documents

Relevant documents published by Schneider Electric


- Electrical Installation Guide
- Expert Guide n°4: "Harmonic detection & filtering".
- Expert Guide n°6: "Power Factor Correction and Harmonic Filtering Guide"
- Technical Guide 152: "Harmonic disturbances in networks, and their treatment". ■ White paper: controlling the impact of Power Factor and Harmonics on Energy
- Efficiency.

Relevant websites

- http://www.schneider-electric.com
- https://www.solution-toolbox.schneider-electric.com/segment-solutions
- http://engineering.electrical-equipment.org/
- http://www.electrical-installation.org

- capacitors for industrial a.c. networks affected by
- IEC 61921 Power capacitors-low voltage power

■ IEC 61642 - Application of filters and shunt

factor correction capacitor banks

Experience the power of digitization with VarSelect to build a simple and efficient PFC Bank

Experience our VarSelect with

- Online tool for "One shop stop" of components to build PFC Bank
- Easy sign up process for users where you can create, save, retrieve, reuse and rework the project
- Complete Bill of materials for Electrical components to build PFC Banks with Single Line diagram
- Design optimization to save time, space and
- Flexibility in selecting range, voltage etc to cover the global market

about VarSelect...

Check your PFC Bank Design Guide!

https://varselect.se.com

se.com

Schneider Electric Industries SAS 35, rue Joseph Monier CS 30323 92506 Rueil Malmaison Cedex France

RCS Nanterre 954 503 439 Capital social 896 313 776 € www.schneider-electric.com

11-2021 PFCED310003EN

As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.

This document has been printed on ecological paper

Design: Schneider Electric Photos: Schneider Electric

Edition: Altavia Connexion - made in France

